Skip to main navigation menu Skip to main content Skip to site footer

Narrative Review

Vol. 5 No. 2 (1999)

Aberrations in Nicotinic Acetylcholine Receptor Structure, Function, and Expression: Implications in Disease

  • Frank Salamone
  • Ming Zhou
DOI
https://doi.org/10.26443/mjm.v5i2.573
Submitted
November 7, 2020
Published
2020-12-01

Abstract

N/A

References

  1. Cooper E, Couturier S, Ballivet M. Pentameric structure and subunit stoichiometry of a neuronal nicotinic acetylcholine receptor. Nature 350: 235-238; 1991.
  2. Anand R, Conroy WG, Schoepfer R, et al. Neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes have a pentameric quaternary structure. Journal of Biological Chemistry 266: 11192-11198; 1991.
  3. Devillers-Thiéry A, Galzi JL, Eiselé JL, et al. Functional architecture of the nicotinic acetylcholine receptor: A prototype of ligand gated ion channels. Journal of Membrane Biology 136:97-112; 1993.
  4. Galzi JL, Devillers-Thiéry A, Hussy N, et al. Mutations in the channel domain of a neuronal nicotinic receptor converts ion selectivity from cationic to anionic. Nature 359: 500-505; 1992.
  5. Devay P, Brussaard A, Listerud M, et al. Diversity in functional properties and primary structure of neuronal nicotinic receptor channels. Renal Physiology and Biochemistry 17: 172-177;1994.
  6. Gotti C, Fornasari D, Clementi F. Human neuronal nicotinic receptors. Progress in Neurobiology 53: 199-237; 1997.
  7. Stauderman KA, Mahaffy LS, Akong M, et al. Characterization of human recombinant neuronal nicotinic acetylcholine receptor subunit combinations a2b4, a3b4 and a4b4 stably expressed in HEK293 cells. Journal of Pharmacology and Experimental Therapeutics 284: 777-789; 1998.
  8. Couturier S, Bertrand D, Matter JM, et al. A neuronal nicotinic acetylcholine receptor subunit (a7) is developmentally regulated and forms a homo-oligomeric channel blocked by alpha-BTX. Neuron 5: 847-856; 1990.
  9. Gotti C, Moretti M, Maggi R, et al. a7 and a8 nicotinic receptor subtypes immunopurified from chick retina have different immunological, pharmacological and functional properties. European Journal of Neuroscience 9: 1201-1211; 1997.
  10. Gerzanich V, Anand R, Lindstrom J. Homomers of a8 and a7 subunits of nicotinic receptors exhibit similar channel but contrasting binding site properties. Molecular Pharmacology 45: 212-220; 1994.
  11. McGehee DS, Role LW. Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Annual Review of Physiology 57: 521-546; 1995.
  12. Sivilotti L, Colquhoun D. Acetylcholine receptors: too many channels, too few functions. Science 269: 1681-1682; 1995.
  13. Jackson MB. Single channel currents in the nicotinic acetylcholine receptor: a direct demonstration of allosteric transitions. Trends in Biochemical Sciences 19: 396-399; 1994.
  14. Auerbach A, Akk G. Desensitization of mouse nicotinic acetylcholine receptor channels. A two-gate mechanism. Journal of General Physiology 112: 181-197; 1998.
  15. Vernino S, Rogers M, Radcliffe KA, et al. Quantitative measurement of calcium flux through muscle and neuronal nicotinic acetylcholine receptors. The Journal of Neuroscience 14: 5514-5524; 1994.
  16. Berridge MJ, Bootman MD, Lipp P. Calcium – a life and death signal. Nature 395: 645-648; 1998.
  17. Clarke PBS. Nicotinic receptors in mammalian brain: localization and relation to cholinergic innervation. Progress in Brain Research 98: 77-83; 1993.
  18. Mesulam M. Cholinergic pathways and the ascending reticular activating system of the human brain. Annals of the New York Academy of Sciences 757: 169-179; 1995.
  19. McGehee DS, Heath MJS, Gelber S, et al. Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 269: 1692-1696; 1995.
  20. Steinlein OK. New insights into the molecular and genetic mechanisms underlying idiopathic epilepsies. Clinical Genetics 54: 169-175; 1998.
  21. Scheffer IE, Bhatia KP, Lopes-Cendes I, et al. Autosomal dominant nocturnal frontal lobe epilepsy: a distinctive clinical disorder. Brain 118: 61-73; 1995.
  22. Phillips HA, Scheffer IE, Berkovic SF, et al. Localization of a gene for autosomal dominant nocturnal frontal lobe epilepsy to chromosome 20q13.2. Nature Genetics 10: 117-203; 1995.
  23. Steinlein OK, Mulley JC, Propping P, et al. A missense mutation in the neuronal nicotinic acetylcholine a4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nature Genetics 11: 201-203; 1995.
  24. Kuryatov A, Gerzanich V, Nelson M, et al. Mutation causing autosomal dominant nocturnal frontal lobe epilepsy alters Ca2+ permeability, conductance, and gating of human a4b2 nicotinic acetylcholine receptors. Journal of Neuroscience 17: 9035- 9047; 1997.
  25. Engel AG, Ohno K, Sine SM. Congenital myasthenic syndromes: experiments of nature. Journal of Physiology (Paris) 92: 113-117; 1998.
  26. Vincent A, Newland C, Croxen R, et al. Genes at the junction – candidates for congenital myasthenic syndromes. Trends in Neurosciences 20: 15-22; 1997.
  27. Zhou M, Engel AG, Auerbach A. Serum choline activates mutant acetylcholine receptors that cause slow channel
  28. congenital myasthenic syndromes. Proceedings of the National Academy of Sciences USA 96: 10466-10471; 1999.
  29. Sine SM, Ohno K, Bouzat C, et al. Mutation of the acetylcholine receptor a subunit causes a slow-channel myasthenic syndrome by enhancing agonist binding affinity. Neuron 15: 229-239; 1995.
  30. Milone M, Wang HL, Ohno K, et al. Slow-channel congenital myasthenic syndrome caused by enhanced activation, desensitization, and agonist binding affinity due to mutation in the M2 domain of the acetylcholine receptor a subunit. Journal of Neuroscience 17: 5651-5665; 1997.
  31. Wang HL, Auerbach A, Bren N, et al. Mutation in the M1 domain of the acetylcholine receptor a subunit decreases the rate of agonist dissociation. Journal of General Physiology 109: 757-766; 1997.
  32. Ohno K, Hutchinson DO, Milone M, et al. Congenital myasthenic syndrome caused by prolonged acetylcholine receptor channel openings due to a mutation in the M2 domain of the e subunit. Proceedings of the National Academy of Sciences USA 92: 758-762; 1995.
  33. Engel AG, Ohno K, Milone M. New mutations in acetylcholine receptor subunit genes reveal heterogeneity in the slow-channel congenital myasthenic syndrome. Human Molecular Genetics 5:1217-1227; 1996.
  34. Collerton D. Cholinergic function and intellectual decline in Alzheimer’s disease. Neuroscience 19: 1-28; 1986.
  35. Whitehouse PJ, Martino AM, Antuono PG, et al. Nicotinic acetylcholine binding sites in Alzheimer’s disease. Brain Research 371: 146-151; 1986.
  36. Bird TD, Stranahan S, Sumi SM, et al. Alzheimer’s disease: choline acetyltransferase activity in brain tissue from clinical and pathological subgroups. Annals of Neurology 14: 284-293; 1983.
  37. Nordberg A. In vivo detection of neurotransmitter changes in Alzheimer’s disease. Annals of the New York Academy of
  38. Sciences 695: 27-33; 1993.
  39. Nordberg A, Lundqvist H, Hartvig P, et al. Kinetic analysis of regional (S)(-)11C-nicotine binding in normal and Alzheimer brains – in vivo assessment using positron emission tomography. Alzheimer Disease and Associated Disorders 9: 21-27; 1995.
  40. Levin ED. Nicotinic systems and cognitive function. Psychopharmacology 108: 417-431; 1992.
  41. Birtwistle J, Hall K. Does nicotine have beneficial effects in the treatment of certain diseases? British Journal of Nursing 5: 1195-1202; 1996.
  42. Jones GMM, Sahakian BJ, Levy R, et al. Effects of acute subcutaneous nicotine on attention, information processing and short-term memory in Alzheimer’s disease. Psychopharmacology 108: 485-494; 1992.
  43. Prendergast MA, Terry AV Jr, Jackson WJ, et al. Improvement in accuracy of delayed recall in aged and non-aged mature monkeys after intramuscular or transdermal administration of the CNS nicotinic receptor agonist ABT-418. Psychopharmacology 130: 276-284; 1997.
  44. Raskind MA, Sadowski CH, Sigmund WR, et al. Effect of tacrine on language, praxis, and noncognitive behavioral problems in Alzheimer disease. Archives of Neurology 54: 836- 840; 1997.
  45. Knopman D, Schneider L, Davis K, et al. Long term tacrine (Cognex) treatment: effects on nursing home placement and mortality. Neurology 47: 166-177; 1996.
  46. Salomon AR, Marcinowski KJ, Friedland RP, et al. Nicotine inhibits amyloid formation by the b-peptide. Biochemistry 35:
  47. -13578; 1996.
  48. Kihara T, Shimohama S, Sawada H, et al. Nicotinic receptor stimulation protects neurons against beta-amyloid toxicity. Annals of Neurology 42: 159-163; 1997.
  49. Häfner H, an der Heiden W. Epidemiology of schizophrenia. Canadian Journal of Psychiatry 42: 139-151; 1997.
  50. Wahlberg KE, Wynne LC, Oja H, et al. Gene-environment interaction in vulnerability to schizophrenia: findings from the Finnish adoptive study of schizophrenia. American Journal of Psychiatry 154: 355-362; 1997.
  51. Susser E, Neugebauer R, Hoek H, et al. Schizophrenia after prenatal famine: further evidence. Archives of General Psychiatry 53: 25-31; 1996.
  52. Jones P, Rodgers B, Murray R, Marmot M. Child developmental risk factors for adult schizophrenia in the British 1946 birth cohort. Lancet 344: 1398-1402; 1994.
  53. Andreasen NC, Arndt S, Swayze V, et al. Thalamic abnormalities in schizophrenia visualized through magnetic resonance image averaging. Science 266: 294-298; 1994.
  54. O’Donovan MC, Owen MJ. The molecular genetics of schizophrenia. Annals of Medicine 28: 541-546; 1996.
  55. Florencio PS, O’Driscoll GA. The medial temporal lobe and schizophrenia. McGill Journal of Medicine 5: 25-34; 1999.
  56. Davis KL, Kahn RS, Ko G, Davidson M. Dopamine in schizophrenia: a review and reconceptualization. American Journal of Psychiatry 148: 1474-1486; 1991.
  57. Lee T, Seeman P, Tourtellotte WW, et al. Binding of 3Hneuroleptics and 3H-apomorphine in schizophrenic brains. Nature 274: 897-900; 1978.
  58. Roth BL, Meltzer HY, Khan N. Binding of typical and atypical antipsychotic drugs to multiple neurotransmitter receptors. Advances in Pharmacology 42: 482-485; 1998.
  59. Iskedjian M, Hux M, Remington GJ. The Canadian experience with risperidone for the treatment of schizophrenia: an overview. Journal of Psychiatry and Neuroscience 23: 229-239; 1998.
  60. Davies A, Adena MA, Keks NA, et al. Risperidone versus haloperidol: I. Meta-analysis of efficacy and safety. Clinical Therapeutics 20: 58-71; 1998.
  61. Egan MF, Weinberger DR. Neurobiology of schizophrenia. Current Opinion in Neurobiology 7: 701-707; 1997.
  62. Deutsch SI, Mastropaolo J, Schwartz BL, et al. A “glutamatergic hypothesis” of schizophrenia. Rationale for pharmacotherapy with glycine. Clinical Neuropharmacology 12: 1-13; 1989.
  63. Tsai G, Passani LA, Slusher BS, et al. Abnormal excitatory neurotransmitter metabolism in schizophrenic brains. Archives of General Psychiatry 52: 829-836; 1995.
  64. Leonard S, Adams C, Breese CR, et al. Nicotinic receptor function in schizophrenia. Schizophrenia Bulletin 22: 431-444; 1996.
  65. Freedman R, Coon H, Myels-Worsley M, et al. Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proceedings of the National Academy of Sciences of the USA 94: 587-592; 1997.
  66. De Leon J, Dadvand M, Canuso C, et al. Schizophrenia and smoking: an epidemiological survey in a state hospital. American Journal of Psychiatry 152: 453-455; 1995.
  67. Ziedonis DM, Kosten TR, Glazer WM, et al. Nicotine dependence and schizophrenia. Hospital and Community Psychiatry 45: 202-206; 1994.
  68. Holzman PS, Kringlen E, Matthysse S, et al. A single dominant gene can account for eye tracking dysfunctions and schizophrenia in offspring of discordant twins. Archives of General Psychiatry 45: 641-647; 1988.
  69. Shagass C. An electrophysiological view of schizophrenia. Biological Psychiatry 11: 3-30; 1976.
  70. Wahlberg KE, Wynne LC, Oja H, et al. Gene-environment interaction in vulnerability to schizophrenia: findings from the Finnish adoptive study of schizophrenia. American Journal of Psychiatry 154: 355-362; 1997.
  71. Alder LE, Hoffer L, Griffith J, et al. Normalization by nicotine of deficient auditory sensory gating in the relatives of schizophrenics. Biological Psychiatry 32: 607-616; 1992.
  72. Adler LE, Hoffer L, Wiser A, et al. Normalization of auditory physiology by cigarette smoking in schizophrenic patients. American Journal of Psychiatry 150: 1856-1861; 1993.
  73. Freedman R, Hall M, Adler LE, et al. Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biological Psychiatry 38: 22-33; 1995.

Downloads

Download data is not yet available.

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.