Skip to main navigation menu Skip to main content Skip to site footer

Research Article

Vol. 3 No. 2 (1997)

The Subnuclear Distribution of 5-HT1A Receptors in the Human Nucleus of the Solitary Tract and Selected Structures of the Caudal Medulla

  • Christopher F. Spurney
  • Donald C. Ohuoha
  • Angela M. Murray
  • Joel E. Kleinman
  • Thomas M. Hyde
DOI
https://doi.org/10.26443/mjm.v3i2.547
Submitted
November 6, 2020
Published
2020-12-01

Abstract

The distribution of 5-HT1A receptors in the subnuclei of the human caudal nucleus of solitary tract and adjacent structures in the dorsal vagal complex was studied using [3H]8-OH-DPAT, a highly selective 5-HT1A receptor agonist. The highest binding of the labeled ligand was found in the dorsal motor nucleus of the vagus, followed by the medial, intermediate, and subpostremal subnuclei of the nucleus of solitary tract. Previous animal studies suggest an important role for these structures in the regulation of visceral function, particularly for the gastrointestinal and cardiovascular systems. The results of this study suggest the possibility of an analogous role for 5-HT1A receptors in the regulation of these autonomic pathways in humans as well.

References

  1. Hyde TM, Miselis RR. Subnuclear organization of the human caudal nucleus of the solitary tract. Brain Research Bulletin 29(1): 95-109; 1992.
  2. Pazos A, Palacios JM. Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I Serotonin-1 receptors. Brain Research 346(2): 205-230; 1985.
  3. Aghajanian GK. The modulatory role of serotonin at multiple receptors in the brain. In: Jabobs BL, Gelperin A eds. Serotonin Neurotransmission and Behavior. Cambridge, MA: MIT Press;1981:156-185.
  4. Nelson DL, Pedigo NW, Yamamura HI. Multiple receptor subtypes of serotonin receptors. In: Yamamura HI, Olsen RW, Usdin E eds. Psychopharmacology and Biochemistry of Neurotransmitter Receptors. Amsterdam: Elsevier/North-Holland; 1980: 325-338.
  5. Pedigo NW, Yamamura HI, Nelson DL. Discrimination of multiple [3H]5-hydroxytratamine binding sites by the neuroleptic spiperone in the rat brain. Journal of Neurochemistry. 36(1): 220-226; 1981.
  6. Gozlan H, El Mestikawy S, Pichat L, et al. Identification of presynaptic serotonin autoreceptors using the new ligand: 3HPAT. Nature 305(5930): 140-142; 1983.
  7. Hamon M, Bourgion S, Gozlan H et al. Biochemical evidence for the 5-HT agonist properties of PAT (8-hydroxy-2-{di-npropylamino}tetralin) in the rat brain. European Journal of Pharmacology 100(3-4): 63-276; 1984.
  8. Marcinkiewicz M, Verge D, Gozlan H et al. Autoradiographic evidence for the heterogeneity of 5-HT1 sites in the rat brain. Brain Research 291(1): 159-163; 1984.
  9. Gillis RA, Hill KJ, Kirby JS, et al. Effect of activation of central nervous system serotonin 1a receptors on cardiorespiratory function. Journal of Pharmacology and Experimental Therapeutics 248(2): 851-857; 1989.
  10. Hashim MA, Bieger D. Excitatory action of 5-HT on deglutitive substrates in the rat solitary complex. Brain Research Bulletin 18(3): 335-363; 1987.
  11. Manakar S, Verderame HM. Organization of serotonin 1A and 1B receptors in the nucleus of the solitary tract. Journal of Comparative Neurology 301(4): 535-553; 1990.
  12. Thor KB, Blitz-Siebert A, Helke CJ. Autoradiographic localization of 5HT1 binding sites in medulla oblongata of the rat. Synapse 10(3): 185-205; 1992.
  13. Thor KB, Blitz-Siebert A, Helke CJ. Autoradiographic localization of 5HT1 binding sites in autonomic areas of the rat dorsomedial medulla oblongata. Synapse 10(3): 217-227; 1992.
  14. Dashwood MR, Gilbey MO, Jordan D et al. Autoradiographic localization of 5-HT1A binding sites in the brainstem of the cat. British Journal of Pharmacology 94: 386P; 1988.
  15. De Vos H, Convents A, De Keyser J et al. Autoradiographic distribution of alpha-2 adrenoreceptors, NAIBS and 5-HT1a receptors in human brain using [3H]idazoxan and [3H]rauwolscine. Brain Research 566(1-2): 13-20; 1991.
  16. Pazos A, Probst A, Palacios JM. Serotonin receptors in the human brain-III. Autoradiographic mapping of serotonin-1 receptors. Neuroscience 21(1): 97-122; 1987.
  17. Berk ML, Smith SE, Karten HJ. Nucleus of the solitary tract and dorsal motor nucleus of the vagus nerve of the pigeon: Localization of peptide and 5-hydroxytrytamine immunoreactive fibers. Journal of Comparative Neurology 338(4): 521-548; 1993.
  18. Manaker S, Zucchi PC. Effects of vagotomy on neurotransmitter receptors in the rat dorsal vagal complex. Neuroscience 52(2):427-441; 1993.
  19. Futuro-Neto HA, Pires JG, Gilbey MP et al. Evidence for the ability of central 5-HT1A receptors to modulate the vagal bradycardia induced by stimulating the upper airways of anesthetized rabbit with smoke. Brain Research. 629(2): 349-354; 1993.
  20. Sporton SC, Shepheard SL, Jordan D et al. Evidence of the involvement of 5-HT1A receptors in the control of cardiac vagal motoneurons in the anaesthetised rat. British Journal of Pharmacology 97: 409P; 1989.
  21. Sporton SC, Shepheard SL, Jordon D et al. Microinjections of 5- HT1a agonist into the dorsal vagal nucleus produce a bradycardia in the atenolol-preteated anaesthetized rat. British Journal of Pharmacology 104(2): 466-470; 1991.
  22. Kalia M. Mesulam MM. Brainstem projections of sensory and motor components of the vagus complex in the cat: I. The cervical vagus and nodose ganglion. Journal of Comparative Neurology. 193(2): 435-465; 1980.
  23. Kalia M, Mesulam MM. Brainstem projections of sensory and motor components of the vagus complex in the cat: II. Laryngeal, racheobronchial, pulmonary, cardiac and gastrointestinal branches. Journal of Comparative Neurology 193(2): 467-508; 1980.
  24. Barraco R, El-Ridi M, Ergene E et al. An atlas of the rat subpostremal nucleus tractus solitarius. Brain Research Bulletin 29(6): 703-765; 1992.
  25. Tork I, McRitchie DA, Rikard-Bell GC et al. Autonomic regulatory centers in the medulla oblongata. In: Paxinos G ed. The Human Nervous System. San Diego, CA: Harcourt Brace Jovanovich: 221-259; 1990.
  26. Altschuler SM, Bao X, Bieger D et al. Viscerotropic representation of the upper alimentary tract in the rat: Sensory ganglia and nuclei of the solitary and spinal trigeminal tracts. Journal of Comparative Neurology 283(2): 248-268; 1989.
  27. Sykes RM, Spyer KM, Izzo PN. Central distribution of substance P, calcitonin gene-related peptide and 5-HT in vagal sensory afferents in the rat dorsal medulla. Neuroscience 59(1):195-210; 1994.
  28. Bieger D, Hopkins DA. Viscerotropic representation of the upper alimentary tract in the medula oblongata in the rat: The nucleus ambiguus. Journal of Comparative Neurology 262(4):546-562; 1987.
  29. Cunningham ET, Sawchenko PE. A circumscribed projection from the nucleus of solitary tract to the nucleus ambiguus in the rat: Anatomical evidence for somatostatin-28-immunoreactive interneurons subserving reflex control of esophageal motolity. Journal of Neuroscience 9(5): 1668-1682; 1989.
  30. Mohammed JR, Saska TA, Chi J et al. Stimulation of the nucleus raphe obscurus produces marked serotonin release into the dorsal medulla of fed but not fasted rats- glutamatergic dependence. Brain Research 695(1): 100-103; 1995.
  31. McCann MJ, Hermann GE, Rogers RC. Dorsal medullary serotonin and gastric motility: enhancement of the effects by thyrotropin-releasing hormone. Journal of the Autonomic Nervous System 25(1): 35-40; 1988.
  32. Lucot JB, Crampton GH. 8-OH-DPAT suppresses vomiting in the cat elicited by motion, cisplatin or xylazine. Pharmacology, Biochemistry and Behavior 33(3): 627-631; 1989.
  33. Miselis RR, Shapiro RE. Dorsal motor nucleus neurons have extensive dendrites penetrating the nucleus of the solitary tract. Federal Proceeding 42: 1125; 1983.
  34. Saper CB, Loewy AD. Efferent connections of the parabrachial nucleus in the rat. Brain Research 197(2): 291-317; 1980.
  35. Schwaber JS, Kapp BS, Higgins GA et al. Amygdaloid and basal forebrain direct connections with the nucleus of the solitary tract and the dorsal motor nucleus. Journal of Neuroscience 2(10): 1424-1438; 1982.
  36. Shapiro RE, Miselis RR. The central connections of the area postrema in the rat. Journal of Comparative Neurology 234(3):344-364; 1985.
  37. Sofroniew MV, Schrell U. Hypothalamic neurons projecting to the rat caudal medulla oblongata, examined by immunoperoxidase staining of retrogradely transported horseradish peroxidase . Neuroscience Letters 19(3): 257-263;1980.

Downloads

Download data is not yet available.