Skip to main navigation menu Skip to main content Skip to site footer

Narrative Review

Vol. 20 No. 2 (2022): New Horizons: Innovation in Medicine

Effects of Visual, Auditory, and Combined Cues on Human Movement and Brain Regions Involved in Perception Action

August 8, 2021


Background:  Sensory stimuli such as visual and auditory cues are important to perceive our surroundings accurately. The effects of visual, auditory, or combined cues to modulate human movements such as walking are well-reported in the neuroscience literature. To date, no comprehensive report has summarized these findings.

Objective: The primary aim of this narrative review is to synthesize the literature on the interaction of visual, auditory, and combined cues of movement, as well as to present specific brain regions involved in perception-action.

Methods: A comprehensive review of the literature of published scientific work was conducted using PubMed and Google Scholar.  Only English language articles that reported on visual, auditory, or combined cues and human movements were selected. Literature that included biofeedback was excluded.

Results:  The literature suggests that visual and auditory cues have the potential to induce deviation in human movements. The posterior superior temporal sulcus and mirror neuron networks are shown to be critical in multimodal sensory integration.

Conclusion: This review presents some important theoretical models and outlines the brain regions involved in sensorimotor synchronization in human movement. Individual visual, auditory, or combined cues may have the potential to develop therapeutic interventions in the rehabilitation of movement disorders.


  1. Baumann, O. & Greenlee, M. W. Neural correlates of coherent audiovisual motion perception. Cerebral cortex (New York, N.Y. : 1991) 17, 1433-1443, doi:10.1093/cercor/bhl055 (2007).
  2. Meredith, M. A. & Stein, B. E. Interactions among Converging Sensory Inputs in the Superior Colliculus. Science 221, 389-391, doi:10.2307/1691747 (1983).
  3. Stein, B. E. & Stanford, T. R. Multisensory integration: current issues from the perspective of the single neuron. Nat Rev Neurosci 9, 255-266, doi:10.1038/nrn2331 (2008).
  4. Perrott, D. R., Saberi, K., Brown, K. & Strybel, T. Z. Auditory psychomotor coordination and visual search performance. Perception & psychophysics 48, 214-226 (1990).
  5. Hughes, H. C., Reuter-Lorenz, P. A., Nozawa, G. & Fendrich, R. Visual-auditory interactions in sensorimotor processing: saccades versus manual responses. Journal of experimental psychology. Human perception and performance 20, 131-153 (1994).
  6. O'Hare, J. J. Perceptual integration. Journal of the Washington Academy of Sciences (1991).
  7. Rossignol, S. Visuomotor regulation of locomotion. Canadian journal of physiology and pharmacology 74, 418-425 (1996).
  8. Gibson, J. J. Reprinted from The British Journal of Psychology (1958), 49, 182-194: Visually controlled locomotion and visual orientation in animals. British journal of psychology (London, England : 1953) 100, 259-271, doi:10.1348/000712608x336077 (2009).
  9. Patla, A. E. Understanding the roles of vision in the control of human locomotion. Gait & Posture 5, 54-69 (1997).
  10. Patla, A. E. How is human gait controlled by vision. Ecological Psychology 10, 287-302 (1998).
  11. Johansson, G. Visual perception of biological motion and a model for its analysis. Perception & psychophysics 14, 201-211, doi:10.3758/BF03212378 (1973).
  12. Beauchamp, M. S., Lee, K. E., Haxby, J. V. & Martin, A. Parallel visual motion processing streams for manipulable objects and human movements. Neuron 34, 149-159 (2002).
  13. Jacobs, A. & Shiffrar, M. Walking perception by walking observers. Journal of experimental psychology. Human perception and performance 31, 157-169, doi:10.1037/0096-1523.31.1.157 (2005).
  14. Lim, I. et al. Effects of external rhythmical cueing on gait in patients with Parkinson's disease: a systematic review. Clin Rehabil 19, 695-713 (2005).
  15. Hollands, K. L. et al. Visual cue training to improve walking and turning after stroke: a study protocol for a multi-centre, single blind randomised pilot trial. Trials 14, 276, doi:10.1186/1745-6215-14-276 (2013).
  16. Heeren, A. et al. Step by step: a proof of concept study of C-Mill gait adaptability training in the chronic phase after stroke. Journal of rehabilitation medicine : official journal of the UEMS European Board of Physical and Rehabilitation Medicine 45, 616-622, doi:10.2340/16501977-1180 (2013).
  17. Bank, P. J., Roerdink, M. & Peper, C. E. Comparing the efficacy of metronome beeps and stepping stones to adjust gait: steps to follow! Exp Brain Res 209, 159-169, doi:10.1007/s00221-010-2531-9 (2011).
  18. Spidalieri, G., Busby, L. & Lamarre, Y. Fast ballistic arm movements triggered by visual, auditory, and somesthetic stimuli in the monkey. II. Effects of unilateral dentate lesion on discharge of precentral cortical neurons and reaction time. J Neurophysiol 50, 1359-1379 (1983).
  19. Chapman, C. E., Spidalieri, G. & Lamarre, Y. Activity of dentate neurons during arm movements triggered by visual, auditory, and somesthetic stimuli in the monkey. J Neurophysiol 55, 203-226 (1986).
  20. Thaut, M. H. et al. Rhythmic auditor Y stimulation improves gait more than NDT/Bobath training in near-ambulatory patients early poststroke: a single-blind, randomized trial. Neurorehabilitation & Neural Repair 21, 455-459 (2007).
  21. Prassas, S., Thaut, M., McIntosh, G. & Rice, R. Effect of auditory rhythmic cuing on gait kinematic parameters of stroke patients. Gait and Posture 6, 218-223 (1997).
  22. Soon Hyun, L., Kyoung Jin, L. & Chang Ho, S. Effects of Rhythmic Auditory Stimulation (RAS) on Gait Ability and Symmetry after Stroke. Journal of Physical Therapy Science 24, 311-314 (2012).
  23. Bradt, J., Magee, W. L., Dileo, C., Wheeler, B. L. & McGilloway, E. Music therapy for acquired brain injury. Cochrane database of systematic reviews (Online) 7, CD006787 (2010).
  24. Suteerawattananon, M., Morris, G. S., Etnyre, B. R., Jankovic, J. & Protas, E. J. Effects of visual and auditory cues on gait in individuals with Parkinson's disease. J Neurol Sci 219, 63-69, doi:10.1016/j.jns.2003.12.007 (2004).
  25. Leman, M. et al. Activating and relaxing music entrains the speed of beat synchronized walking. PLoS One 8, e67932, doi:10.1371/journal.pone.0067932 (2013).
  26. Conklyn, D. et al. A home-based walking program using rhythmic auditory stimulation improves gait performance in patients with multiple sclerosis: a pilot study. Neurorehabil Neural Repair 24, 835-842, doi:10.1177/1545968310372139 (2010).
  27. Powell, W., Stevens, B., Hand, S. & Simmonds, M. Sounding better: fast audio cues increase walk speed in treadmill-mediated virtual rehabilitation environments. Studies in health technology and informatics 154, 202-207 (2010).
  28. Roerdink, M., Lamoth, C. J. C., Kwakkel, G., van Wieringen, P. C. W. & Beek, P. J. Gait coordination after stroke: benefits of acoustically paced treadmill walking. Physical therapy 87, 1009-1022 (2007).
  29. Pelton, T. A., Johannsen, L., Huiya, C. & Wing, A. M. Hemiparetic stepping to the beat: asymmetric response to metronome phase shift during treadmill gait. Neurorehabilitation & Neural Repair 24, 428-434 (2010).
  30. Roerdink, M. et al. Rhythm perturbations in acoustically paced treadmill walking after stroke. Neurorehabilitation and Neural Repair 23, 668-678 (2009).
  31. Thaut, M. H. Rhythm, Music, and the Brain: Scientific Foundations and Clinical Applications. (Routledge, 2005).
  32. Thaut, M. & Miller, R. Multiple synchronization strategies in tracking of rhythmic auditory stimulation. Proceedings of the Society for Neuroscience 146 (1994).
  33. Styns, F., van Noorden, L., Moelants, D. & Leman, M. Walking on music. Hum Mov Sci 26, 769-785, doi:10.1016/j.humov.2007.07.007 (2007).
  34. Wittwer, J. E., Webster, K. E. & Hill, K. Music and metronome cues produce different effects on gait spatiotemporal measures but not gait variability in healthy older adults. Gait Posture 37, 219-222, doi:10.1016/j.gaitpost.2012.07.006 (2013).
  35. Rodriguez-Fornells, A. et al. The involvement of audio-motor coupling in the music-supported therapy applied to stroke patients. Annals of the New York Academy of Sciences 1252, 282-293 (2012).
  36. Zatorre, R. J., Chen, J. L. & Penhune, V. B. When the brain plays music: auditory-motor interactions in music perception and production. Nature reviews. Neuroscience 8, 547-558, doi:10.1038/nrn2152 (2007).
  37. Bangert, M. & Altenmuller, E. O. Mapping perception to action in piano practice: a longitudinal DC-EEG study. BMC neuroscience 4, 26, doi:10.1186/1471-2202-4-26 (2003).
  38. Bangert, M., Haeusler, U. & Altenmüller, E. On practice: how the brain connects piano keys and piano sounds. Annals of the New York Academy of Sciences 930, 425-428 (2001).
  39. Pascual-Leone, A. et al. Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J Neurophysiol 74, 1037-1045 (1995).
  40. Classen, J. et al. Multimodal output mapping of human central motor representation on different spatial scales. The Journal of physiology 512 ( Pt 1), 163-179 (1998).
  41. Bangert, M. et al. Shared networks for auditory and motor processing in professional pianists: evidence from fMRI conjunction. Neuroimage 30, 917-926, doi:10.1016/j.neuroimage.2005.10.044 (2006).
  42. Haueisen, J. & Knosche, T. R. Involuntary motor activity in pianists evoked by music perception. J Cogn Neurosci 13, 786-792, doi:10.1162/08989290152541449 (2001).
  43. Popescu, M., Otsuka, A. & Ioannides, A. A. Dynamics of brain activity in motor and frontal cortical areas during music listening: a magnetoencephalographic study. Neuroimage 21, 1622-1638, doi:10.1016/j.neuroimage.2003.11.002 (2004).
  44. Baumann, S. et al. A network for audio-motor coordination in skilled pianists and non-musicians. Brain Res 1161, 65-78, doi:10.1016/j.brainres.2007.05.045 (2007).
  45. Hickok, G., Buchsbaum, B., Humphries, C. & Muftuler, T. Auditory-motor interaction revealed by fMRI: speech, music, and working memory in area Spt. J Cogn Neurosci 15, 673-682, doi:10.1162/089892903322307393 (2003).
  46. Lotze, M. et al. Comparison of representational maps using functional magnetic resonance imaging and transcranial magnetic stimulation. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology 114, 306-312 (2003).
  47. Bunzeck, N., Wuestenberg, T., Lutz, K., Heinze, H. J. & Jancke, L. Scanning silence: mental imagery of complex sounds. Neuroimage 26, 1119-1127, doi:10.1016/j.neuroimage.2005.03.013 (2005).
  48. Zatorre, R. J., Halpern, A. R., Perry, D. W., Meyer, E. & Evans, A. C. Hearing in the Mind's Ear: A PET Investigation of Musical Imagery and Perception. J Cogn Neurosci 8, 29-46, doi:10.1162/jocn.1996.8.1.29 (1996).
  49. Halpern, A. R. & Zatorre, R. J. When that tune runs through your head: a PET investigation of auditory imagery for familiar melodies. Cerebral cortex (New York, N.Y. : 1991) 9, 697-704 (1999).
  50. Roth, M. et al. Possible involvement of primary motor cortex in mentally simulated movement: a functional magnetic resonance imaging study. Neuroreport 7, 1280-1284 (1996).
  51. Lotze, M. et al. Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study. J Cogn Neurosci 11, 491-501 (1999).
  52. Porro, C. A. et al. Primary motor and sensory cortex activation during motor performance and motor imagery: a functional magnetic resonance imaging study. The Journal of neuroscience : the official journal of the Society for Neuroscience 16, 7688-7698 (1996).
  53. Chen, J. L., Penhune, V. B. & Zatorre, R. J. The role of auditory and premotor cortex in sensorimotor transformations. Annals of the New York Academy of Sciences 1169, 15-34 (2009).
  54. Aglioti, S. M. & Pazzaglia, M. Sounds and scents in (social) action. Trends Cogn Sci 15, 47-55, doi:10.1016/j.tics.2010.12.003 (2011).
  55. Schouten, B., Troje, N. F., Vroomen, J. & Verfaillie, K. The effect of looming and receding sounds on the perceived in-depth orientation of depth-ambiguous biological motion figures. PLoS One 6, e14725, doi:10.1371/journal.pone.0014725 (2011).
  56. Thomas, J. P. & Shiffrar, M. I can see you better if I can hear you coming: action-consistent sounds facilitate the visual detection of human gait. Journal of vision 10, 14, doi:10.1167/10.12.14 (2010).
  57. van der Zwan, R. et al. Gender bending: auditory cues affect visual judgements of gender in biological motion displays. Exp Brain Res 198, 373-382, doi:10.1007/s00221-009-1800-y (2009).
  58. Blake, R. & Shiffrar, M. Perception of human motion. Annu Rev Psychol 58, 47-73, doi:10.1146/annurev.psych.57.102904.190152 (2007).
  59. Brooks, A. et al. Auditory motion affects visual biological motion processing. Neuropsychologia 45, 523-530, doi:10.1016/j.neuropsychologia.2005.12.012 (2007).
  60. Zuniga, E. & Leavitt, L. Analysis of gait: A method of measurement. Biomechanics IV, University Park Press, Baltimore, MD, 85-90 (1974).
  61. Meredith, M. A. & Stein, B. E. Interactions among converging sensory inputs in the superior colliculus. Science (1983).
  62. Bi, G. & Poo, M. Synaptic modification by correlated activity: Hebb's postulate revisited. Annual review of neuroscience 24, 139-166, doi:10.1146/annurev.neuro.24.1.139 (2001).
  63. Saygin, A. P., Driver, J. & de Sa, V. R. In the footsteps of biological motion and multisensory perception: judgments of audiovisual temporal relations are enhanced for upright walkers. Psychological science 19, 469-475, doi:10.1111/j.1467-9280.2008.02111.x (2008).
  64. Cutting, J. E. Generation of synthetic male and female walkers through manipulation of a biomechanical invariant. Perception 7, 393-405 (1978).
  65. Cutting, J. E., Proffitt, D. R. & Kozlowski, L. T. A biomechanical invariant for gait perception. J Exp Psychol Hum Percept Perform 4, 357-372 (1978).
  66. Ekimov, A. & Sabatier, J. M. Rhythm analysis of orthogonal signals from human walking. The Journal of the Acoustical Society of America 129, 1306-1314, doi:10.1121/1.3533694 (2011).
  67. Sutherland, D., Kaufman, K. & Moitoza, J. Kinematics of normal human walking. Human walking, 23-44 (1994).
  68. Giordano, B. L. & McAdams, S. Material identification of real impact sounds: effects of size variation in steel, glass, wood, and plexiglass plates. J Acoust Soc Am 119, 1171-1181 (2006).
  69. Li, X. F., Logan, R. J. & Pastore, R. E. Perception of acoustic source characteristics: walking sounds. The Journal of the Acoustical Society of America 90, 3036-3049 (1991).
  70. Pastore, R. E., Flint, J. D., Gaston, J. R. & Solomon, M. J. Auditory event perception: the source-perception loop for posture in human gait. Percept Psychophys 70, 13-29 (2008).
  71. Giordano, B. L. et al. Identification of walked-upon materials in auditory, kinesthetic, haptic, and audio-haptic conditions. J Acoust Soc Am 131, 4002-4012, doi:10.1121/1.3699205 (2012).
  72. Deouell, L. Y., Heller, A. S., Malach, R., D'Esposito, M. & Knight, R. T. Cerebral responses to change in spatial location of unattended sounds. Neuron 55, 985-996 (2007).
  73. Saarela, M. V. & Hari, R. Listening to humans walking together activates the social brain circuitry. Social neuroscience 3, 401-409, doi:10.1080/17470910801897633 (2008).
  74. Repp, B. H. Sensorimotor synchronization: a review of the tapping literature. Psychon Bull Rev 12, 969-992 (2005).
  75. Thaut, M. H., Miller, R. A. & Schauer, L. M. Multiple synchronization strategies in rhythmic sensorimotor tasks: phase vs period correction. Biological cybernetics 79, 241-250 (1998).
  76. Molinari, M., Leggio, M. G., De Martin, M., Cerasa, A. & Thaut, M. Neurobiology of rhythmic motor entrainment. Ann N Y Acad Sci 999, 313-321 (2003).
  77. Saygin, A. P. Superior temporal and premotor brain areas necessary for biological motion perception. Brain 130, 2452-2461, doi:10.1093/brain/awm162 (2007).
  78. Saygin, A. P., Wilson, S. M., Hagler, D. J., Jr., Bates, E. & Sereno, M. I. Point-light biological motion perception activates human premotor cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience 24, 6181-6188, doi:10.1523/jneurosci.0504-04.2004 (2004).
  79. Grezes, J. et al. Does perception of biological motion rely on specific brain regions? Neuroimage 13, 775-785, doi:10.1006/nimg.2000.0740 (2001).
  80. Grossman, E. D. & Blake, R. Brain Areas Active during Visual Perception of Biological Motion. Neuron 35, 1167-1175 (2002).
  81. Pelphrey, K. A. et al. Brain activity evoked by the perception of human walking: controlling for meaningful coherent motion. The Journal of neuroscience : the official journal of the Society for Neuroscience 23, 6819-6825 (2003).
  82. Ptito, M., Faubert, J., Gjedde, A. & Kupers, R. Separate neural pathways for contour and biological-motion cues in motion-defined animal shapes. Neuroimage 19, 246-252 (2003).
  83. Puce, A. & Perrett, D. Electrophysiology and brain imaging of biological motion. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 358, 435-445, doi:10.1098/rstb.2002.1221 (2003).
  84. Kaplan, J. T. & Iacoboni, M. Multimodal action representation in human left ventral premotor cortex. Cognitive processing 8, 103-113, doi:10.1007/s10339-007-0165-z (2007).
  85. Schubotz, R. I. & Von Cramon, D. Y. Sequences of abstract nonbiological stimuli share ventral premotor cortex with action observation and imagery. The Journal of Neuroscience 24, 5467-5474 (2004).
  86. Wuerger, S. M. et al. Premotor cortex is sensitive to auditory-visual congruence for biological motion. J Cogn Neurosci 24, 575-587, doi:10.1162/jocn_a_00173 (2012).
  87. Alaerts, K., Swinnen, S. P. & Wenderoth, N. Interaction of sound and sight during action perception: evidence for shared modality-dependent action representations. Neuropsychologia 47, 2593-2599, doi:10.1016/j.neuropsychologia.2009.05.006 (2009).
  88. Meredith, M. A. & Stein, B. E. Spatial factors determine the activity of multisensory neurons in cat superior colliculus. Brain Res 365, 350-354 (1986).
  89. Beauchamp, M. S., Argall, B. D., Bodurka, J., Duyn, J. H. & Martin, A. Unraveling multisensory integration: patchy organization within human STS multisensory cortex. Nat Neurosci 7, 1190-1192, doi:10.1038/nn1333 (2004).
  90. Pizzamiglio, L. et al. Separate neural systems for processing action- or non-action-related sounds. Neuroimage 24, 852-861, doi:10.1016/j.neuroimage.2004.09.025 (2005).
  91. Oram, M. W. & Perrett, D. I. Integration of form and motion in the anterior superior temporal polysensory area (STPa) of the macaque monkey. J Neurophysiol 76, 109-129 (1996).
  92. Bushara, K. O. et al. Neural correlates of cross-modal binding. Nat Neurosci 6, 190-195, doi:10.1038/nn993 (2003).
  93. Grezes, J., Costes, N. & Decety, J. The effects of learning and intention on the neural network involved in the perception of meaningless actions. Brain 122 ( Pt 10), 1875-1887 (1999).
  94. Rizzolatti, G., Fadiga, L., Gallese, V. & Fogassi, L. Premotor cortex and the recognition of motor actions. Brain Res Cogn Brain Res 3, 131-141 (1996).
  95. Gallese, V., Fadiga, L., Fogassi, L. & Rizzolatti, G. Action recognition in the premotor cortex. Brain 119 ( Pt 2), 593-609 (1996).
  96. Kohler, E. et al. Hearing sounds, understanding actions: action representation in mirror neurons. Science 297, 846-848, doi:10.1126/science.1070311 (2002).
  97. Rizzolatti, G. & Craighero, L. The mirror-neuron system. Annual review of neuroscience 27, 169-192, doi:10.1146/annurev.neuro.27.070203.144230 (2004).
  98. Lahav, A., Saltzman, E. & Schlaug, G. Action representation of sound: audiomotor recognition network while listening to newly acquired actions. The Journal of neuroscience : the official journal of the Society for Neuroscience 27, 308-314, doi:10.1523/jneurosci.4822-06.2007 (2007).
  99. Iacoboni, M. et al. Grasping the intentions of others with one's own mirror neuron system. PLoS biology 3, e79 (2005).
  100. Aziz‐Zadeh, L., Iacoboni, M., Zaidel, E., Wilson, S. & Mazziotta, J. Left hemisphere motor facilitation in response to manual action sounds. European Journal of Neuroscience 19, 2609-2612 (2004).
  101. Keysers, C. et al. Audiovisual mirror neurons and action recognition. Exp Brain Res 153, 628-636, doi:10.1007/s00221-003-1603-5 (2003).
  102. Rizzolatti, G. & Sinigaglia, C. The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nature Reviews Neuroscience 11, 264-274 (2010).
  103. Iacoboni, M. Imitation, empathy, and mirror neurons. Annual review of psychology 60, 653-670 (2009).
  104. Fadiga, L., Fogassi, L., Pavesi, G. & Rizzolatti, G. Motor facilitation during action observation: a magnetic stimulation study. J Neurophysiol 73, 2608-2611 (1995).
  105. Kannape, O. A. & Blanke, O. Agency, gait and self-consciousness. International journal of psychophysiology : official journal of the International Organization of Psychophysiology 83, 191-199, doi:10.1016/j.ijpsycho.2011.12.006 (2012).
  106. Salomon, R., Lim, M., Kannape, O., Llobera, J. & Blanke, O. "Self pop-out": agency enhances self-recognition in visual search. Exp Brain Res 228, 173-181, doi:10.1007/s00221-013-3549-6 (2013).
  107. Hommel, B. Action control according to TEC (theory of event coding). Psychological Research PRPF 73, 512-526 (2009).
  108. Prinz, W. Perception and action planning. European journal of cognitive psychology 9, 129-154 (1997).
  109. Grezes, J. & Decety, J. Does visual perception of object afford action? Evidence from a neuroimaging study. Neuropsychologia 40, 212-222 (2002).
  110. Hanakawa, T. et al. Functional properties of brain areas associated with motor execution and imagery. J Neurophysiol 89, 989-1002, doi:10.1152/jn.00132.2002 (2003).
  111. Iseki, K., Hanakawa, T., Shinozaki, J., Nankaku, M. & Fukuyama, H. Neural mechanisms involved in mental imagery and observation of gait. Neuroimage 41, 1021-1031, doi:10.1016/j.neuroimage.2008.03.010 (2008).
  112. Thaut, M. H. et al. Distinct cortico-cerebellar activations in rhythmic auditory motor synchronization. Cortex 45, 44-53 (2009).
  113. Sokolov, A. A. et al. Biological motion processing: the left cerebellum communicates with the right superior temporal sulcus. Neuroimage 59, 2824-2830, doi:10.1016/j.neuroimage.2011.08.039 (2012).
  114. Bernieri, F. J., Reznick, J. S. & Rosenthal, R. Synchrony, pseudosynchrony, and dissynchrony: Measuring the entrainment process in mother-infant interactions. Journal of personality and social psychology 54, 243 (1988).
  115. Meltzoff, A. N. & Decety, J. What imitation tells us about social cognition: a rapprochement between developmental psychology and cognitive neuroscience. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 358, 491-500 (2003).
  116. Chartrand, T. L. & Dalton, A. N. Mimicry: Its ubiquity, importance, and functionality. Oxford handbook of human action, 458-483 (2009).
  117. Scheflen, A. The significance of posture in communication systems. Communication Theory 293 (2007).
  118. Stephan, K. M. et al. Conscious and subconscious sensorimotor synchronization--prefrontal cortex and the influence of awareness. Neuroimage 15, 345-352 (2002).
  119. Thaut, M. H. Neural basis of rhythmic timing networks in the human brain. Ann N Y Acad Sci 999, 364-373 (2003).
  120. Oullier, O., de Guzman, G. C., Jantzen, K. J., Lagarde, J. & Kelso, J. A. Social coordination dynamics: measuring human bonding. Social neuroscience 3, 178-192, doi:10.1080/17470910701563392 (2008).
  121. Kannape, O. A., Schwabe, L., Tadi, T. & Blanke, O. The limits of agency in walking humans. Neuropsychologia 48, 1628-1636, doi:10.1016/j.neuropsychologia.2010.02.005 (2010).
  122. Menzer, F. et al. Feeling in control of your footsteps: Conscious gait monitoring and the auditory consequences of footsteps. Cognitive neuroscience 1, 184-192 (2010).
  123. Nessler, J. A. & Gilliland, S. J. Interpersonal synchronization during side by side treadmill walking is influenced by leg length differential and altered sensory feedback. Hum Mov Sci 28, 772-785, doi:10.1016/j.humov.2009.04.007 (2009).
  124. Zivotofsky, A. Z., Gruendlinger, L. & Hausdorff, J. M. Modality-specific communication enabling gait synchronization during over-ground side-by-side walking. Hum Mov Sci 31, 1268-1285, doi:10.1016/j.humov.2012.01.003 (2012).
  125. Zivotofsky, A. Z. & Hausdorff, J. M. The sensory feedback mechanisms enabling couples to walk synchronously: an initial investigation. J Neuroeng Rehabil 4, 28, doi:10.1186/1743-0003-4-28 (2007).
  126. Vogeley, K. et al. Neural correlates of first-person perspective as one constituent of human self-consciousness. J Cogn Neurosci 16, 817-827, doi:10.1162/089892904970799 (2004).


Download data is not yet available.