Back, S.A., B.H. Han, N.L. Luo, et al. Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia. J Neurosci 2002; 22(2): 455-63.
Duffy, T.E., Kohle, S.J., and Vannucci, R.C. Carbohydrate and energy metabolism in perinatal rat brain: relation to survival in anoxia. J Neurochem 1940; 24(2): 271-276.
Kabat, H. The greater resistance of very young animals to arrest of the brain circulation. Am. J. Physiol 1940; 130: 588-599.
Volpe, J.J. Neurobiology of periventricular leukomalacia in the premature infant. Pediatr Res 2001; 50(5): 553-62.
Lynch, J.K., D.G. Hirtz, G. DeVeber, and K.B. Nelson. Report of the National Institute of Neurological Disorders and Stroke workshop on perinatal and childhood stroke. Pediatrics 2002; 109(1): 116-23.
Lynch, J.K. and K.B. Nelson. Epidemiology of perinatal stroke. Curr Opin Pediatr 2001; 13(6): 499-505.
Virchow, R. Zur pathologischen Anatomie des Gehirns I. Congenitale Encephalitis und Myelitis. (In German). Virchows Arch Pathol Anat 1867; 38: 129-142.
Banker, B.Q. and J.C. Larroche. Periventricular leukomalacia of infancy. A form of neonatal anoxic encephalopathy. Arch Neurol 1962; 7: 386-410.
Volpe, J.J., Neurology of the Newborn. 2001: WB Saunders Company.
Leviton, A., N. Paneth, M.L. Reuss, et al. Maternal infection, fetal inflammatory response, and brain damage in very low birth weight infants. Developmental Epidemiology Network Investigators. Pediatr Res 1999; 46(5): 566-75.
Wu, Y.W. and J.M. Colford, Jr. Chorioamnionitis as a risk factor for cerebral palsy: A meta-analysis. JAMA 2000; 284(11): 1417-24.
Follett, P.L., P.A. Rosenberg, J.J. Volpe, and F.E. Jensen. NBQX attenuates excitotoxic injury in developing white matter. J Neurosci 2000; 20(24): 9235-41.
Rees, S., M. Stringer, Y. Just, S.B. Hooper, and R. Harding. The vulnerability of the fetal sheep brain to hypoxemia at mid-gestation. Brain Res Dev Brain Res 1997; 103(2): 103-18.
Vannucci, R.C., J.R. Connor, D.T. Mauger, et al. Rat model of perinatal hypoxic-ischemic brain damage. J Neurosci Res 1999; 55(2): 158-63.
Yue, X., H. Mehmet, J. Penrice, et al. Apoptosis and necrosis in the newborn piglet brain following transient cerebral hypoxia-ischaemia. Neuropathol Appl Neurobiol 1997; 23(1): 16-25.
Back, S.A. and S.A. Rivkees. Emerging concepts in periventricular white matter injury. Semin Perinatol 2004; 28(6): 405-14.
Astrup, J., P.M. Sorensen, and H.R. Sorensen. Oxygen and glucose consumption related to Na+-K+ transport in canine brain. Stroke 1981; 12(6): 726-30.
Rorke, L.B. Anatomical features of the developing brain implicated in pathogenesis of hypoxic-ischemic injury. Brain Pathol 1992; 2(3): 211-21.
Altman, D.I., W.J. Powers, J.M. Perlman, P. Herscovitch, S.L.Volpe, and J.J. Volpe. Cerebral blood flow requirement for brain viability in newborn infants is lower than in adults. Ann Neurol 1988; 24(2): 218-26.
Greisen, G. and K. Borch. White matter injury in the preterm neonate: the role of perfusion. Dev Neurosci 2001; 23(3): 209-12.
Borch, K. and G. Greisen. Blood flow distribution in the normal human preterm brain. Pediatr Res 1998; 43(1): 28-33.
Powers, W.J., R.L. Grubb, Jr., D. Darriet, and M.E. Raichle. Cerebral blood flow and cerebral metabolic rate of oxygen requirements for cerebral function and viability in humans. J Cereb Blood Flow Metab 1985; 5(4): 600-8.
Tsuji, M., J.P. Saul, A. du Plessis, et al. Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants. Pediatrics 2000; 106(4): 625-32.
Iida, K., S. Takashima, and K. Ueda. Immunohistochemical study of myelination and oligodendrocyte in infants with periventricular leukomalacia. Pediatr Neurol 1995; 13(4): 296-304.
Paneth, N., R. Rudelli, W. Monte, et al. White matter necrosis in very low birth weight infants: neuropathologic and ultrasonographic findings in infants surviving six days or longer. J Pediatr 1990; 116(6): 975-84.
Back, S.A., N.L. Luo, N.S. Borenstein, J.M. Levine, J.J. Volpe, and H.C. Kinney. Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci 2001; 21(4): 1302-12.
Back, S.A., X. Gan, Y. Li, P.A. Rosenberg, and J.J. Volpe. Maturation-dependent vulnerability of oligodendrocytes to oxidative stress-induced death caused by glutathione depletion. J Neurosci 1998; 18(16): 6241-53.
Deng, W., P.A. Rosenberg, J.J. Volpe, and F.E. Jensen. Calcium-permeable AMPA/kainate receptors mediate toxicity and preconditioning by oxygen-glucose deprivation in oligodendrocyte precursors. Proc Natl Acad Sci USA 2003; 100(11): 6801-6.
Fern, R. and T. Moller. Rapid ischemic cell death in immature oligodendrocytes: a fatal glutamate release feedback loop. J Neurosci 2000; 20(1): 34-42.
Hagberg, H. Hypoxic-ischemic damage in the neonatal brain: excitatory amino acids. Dev Pharmacol Ther 1992; 18(3-4): 139-44.
Silverstein, F.S., B. Naik, and J. Simpson. Hypoxia-ischemia stimulates hippocampal glutamate efflux in perinatal rat brain: an in vivo microdialysis study. Pediatr Res 1991; 30(6): 587-90.
Karadottir, R., P. Cavelier, L.H. Bergersen, and D. Attwell. NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 2005; 438(7071): 1162-6.
Salter, M.G. and R. Fern. NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature 2005; 438(7071): 1167-71.
Micu, I., Q. Jiang, E. Coderre, et al. NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature 2005; 439(7079): 988-92.
Wilke, S., R. Thomas, N. Allcock, and R. Fern. Mechanism of acute ischemic injury of oligodendroglia in early myelinating white matter: the importance of astrocyte injury and glutamate release. J Neuropathol Exp Neurol 2004; 63(8): 872-81.
Rosenberg, P.A., W. Dai, X.D. Gan, et al. Mature myelin basic protein-expressing oligodendrocytes are insensitive to kainate toxicity. J Neurosci Res 2003; 71(2): 237-45.
Burnashev, N., H. Monyer, P.H. Seeburg, and B. Sakmann. Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron 1992; 8(1): 189-98.
Durand, G.M. and R.S. Zukin. Developmental regulation of mRNAs encoding rat brain kainate/AMPA receptors: a northern analysis study. J Neurochem 1993; 61(6): 2239-46.
Monyer, H., N. Burnashev, D.J. Laurie, B. Sakmann, and P.H. Seeburg. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 1994; 12(3): 529-40.
Pellegrini-Giampietro, D.E., M.V. Bennett, and R.S. Zukin. Are Ca(2+)-permeable kainate/AMPA receptors more abundant in immature brain? Neurosci Lett 1992; 144(1-2): 65-9.
Akins, P.T. and R.P. Atkinson. Glutamate AMPA receptor antagonist treatment for ischaemic stroke. Curr Med Res Opin 2002; 18 Suppl 2: s9-13.
Ikonomidou, C. and L. Turski. Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol 2002; 1(6): 383-6.
Low, S.J. and C.L. Roland. Review of NMDA antagonist-induced neurotoxicity and implications for clinical development. Int J Clin Pharmacol Ther 2004; 42(1): 1-14.
Dingley, J., J. Tooley, H. Porter, and M. Thoresen. Xenon Provides Short-Term Neuroprotection in Neonatal Rats When Administered After Hypoxia-Ischemia. Stroke, 2005.
Li, S. and P.K. Stys. Na(+)-K(+)-ATPase inhibition and depolarization induce glutamate release via reverse Na(+)-dependent transport in spinal cord white matter. Neuroscience 2001; 107(4): 675-83.
Thomas, R., M.G. Salter, S. Wilke, et al. Acute ischemic injury of astrocytes is mediated by Na-K-Cl cotransport and not Ca2+ influx at a key point in white matter development. J Neuropathol Exp Neurol 2004; 63(8): 856-71.
Oka, A., M.J. Belliveau, P.A. Rosenberg, and J.J. Volpe. Vulnerability of oligodendroglia to glutamate: pharmacology, mechanisms, and prevention. J Neurosci 1993; 13(4): 1441-53.
Fellman, V. and K.O. Raivio. Reperfusion injury as the mechanism of brain damage after perinatal asphyxia. Pediatr Res 1997; 41(5): 599-606.
Yonezawa, M., S.A. Back, X. Gan, P.A. Rosenberg, and J.J. Volpe. Cystine deprivation induces oligodendroglial death: rescue by free radical scavengers and by a diffusible glial factor. J Neurochem 1996; 67(2): 566-73.
Lees, K.R., J.A. Zivin, T. Ashwood, et al. NXY-059 for acute ischemic stroke. N Engl J Med 2006; 354(6): 588-600.
Fern, R. Intracellular calcium and cell death during ischemia in neonatal rat white matter astrocytes in situ. J Neurosci 1998; 18(18): 7232-43.
Goldberg, M.P. and D.W. Choi. Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury. J Neurosci 1993; 13(8): 3510-24.
Duffy, S. and B.A. MacVicar. In vitro ischemia promotes calcium influx and intracellular calcium release in hippocampal astrocytes. J Neurosci 1996; 16(1): 71-81.
Bondarenko, A., N. Svichar, and M. Chesler. Role of Na+-H+ and Na+-Ca2+ exchange in hypoxia-related acute astrocyte death. Glia 2005; 49(1): 143-52.
Holgado, A. and L. Beauge. The Na(+)-Ca2+ exchange system in rat glial cells in culture: activation by external monovalent cations. Glia 1995; 14(2): 77-86.
Martin, L.J., A.M. Brambrink, C. Lehmann, et al. Hypoxia- ischemia causes abnormalities in glutamate transporters and death of astroglia and neurons in newborn striatum. Ann Neurol 1997; 42(3): 335-48.
Deguchi, K., K. Oguchi, and S. Takashima. Characteristic neuropathology of leukomalacia in extremely low birth weight infants. Pediatr Neurol 1997; 16(4): 296-300.
Farkas, E., A. Institoris, F. Domoki, A. Mihaly, P.G. Luiten, and F. Bari. Diazoxide and dimethyl sulphoxide prevent cerebral hypoperfusion-related learning dysfunction and brain damage after carotid artery occlusion. Brain Res 2004; 1008(2): 252-60.
Haynes, R.L., R.D. Folkerth, R.J. Keefe, et al. Nitrosative and oxidative injury to premyelinating oligodendrocytes in periventricular leukomalacia. J Neuropathol Exp Neurol 2003; 62(5): 441-50.
Sizonenko, S.V., J.Z. Kiss, T. Inder, P.D. Gluckman, and C.E. Williams. Distinctive neuropathologic alterations in the deep layers of the parietal cortex after moderate ischemic-hypoxic injury in the P3 immature rat brain. Pediatr Res 2005; 57(6): 865-72.
Ridet, J.L., S.K. Malhotra, A. Privat, and F.H. Gage. Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 1997; 20(12): 570-7.
Bruno, V., G. Battaglia, G. Casabona, A. Copani, F. Caciagli, and F. Nicoletti. Neuroprotection by glial metabotropic glutamate receptors is mediated by transforming growth factor-beta. J Neurosci 1998; 18(23): 9594-600.
Dhandapani, K.M., M. Hadman, L. De Sevilla, M.F. Wade, V.B. Mahesh, and D.W. Brann. Astrocyte protection of neurons: role of transforming growth factor-beta signaling via a c-Jun-AP-1 protective pathway. J Biol Chem 2003; 278(44): 43329-39.
D'Souza, S.D., K.A. Alinauskas, and J.P. Antel. Ciliary neurotrophic factor selectively protects human oligodendrocytes from tumor necrosis factor-mediated injury. J Neurosci Res 1996; 43(3): 289-98.
Iwata-Ichikawa, E., Y. Kondo, I. Miyazaki, M. Asanuma, and N. Ogawa. Glial cells protect neurons against oxidative stress via transcriptional up-regulation of the glutathione synthesis. J Neurochem 1999; 72(6): 2334-44.
Lucius, R. and J. Sievers. Postnatal retinal ganglion cells in vitro: protection against reactive oxygen species (ROS)-induced axonal degeneration by cocultured astrocytes. Brain Res 1996; 743(1-2): 56-62.
Trendelenburg, G. and U. Dirnagl. Neuroprotective role of astrocytes in cerebral ischemia: focus on ischemic preconditioning. Glia 2005; 50(4): 307-20.
Matute, C., M. Domercq, and M.V. Sanchez-Gomez. Glutamate- mediated glial injury: mechanisms and clinical importance. Glia 2006; 53(2): 212-24.
Ransom, B.R. and R.K. Orkand. Glial-neuronal interactions in non-synaptic areas of the brain: studies in the optic nerve. Trends Neurosci 1996; 19(8): 352-8.
Arai, Y., K. Deguchi, M. Mizuguchi, and S. Takashima. Expression of beta-amyloid precursor protein in axons of periventricular leukomalacia brains. Pediatr Neurol 1995; 13(2): 161-3.
Meng, S.Z., Y. Arai, K. Deguchi, and S. Takashima. Early detection of axonal and neuronal lesions in prenatal-onset periventricular leukomalacia. Brain Dev 1997; 19(7): 480-4.
Ohyu, J., G. Marumo, H. Ozawa, et al. Early axonal and glial pathology in fetal sheep brains with leukomalacia induced by repeated umbilical cord occlusion. Brain Dev 1999; 21(4): 248-52.
Fern, R., P. Davis, S.G. Waxman, and B.R. Ransom. Axon conduction and survival in CNS white matter during energy deprivation: a developmental study. J Neurophysiol 1998; 79(1):
-105.
Stys, P.K., B.R. Ransom, S.G. Waxman, and P.K. Davis. Role of extracellular calcium in anoxic injury of mammalian central white matter. Proc Natl Acad Sci USA 1990; 87(11): 4212-6.
Stys, P.K., S.G. Waxman, and B.R. Ransom. Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na(+)-Ca2+ exchanger. J Neurosci 1992; 12(2): 430-9.
Fern, R., B.R. Ransom, and S.G. Waxman. Voltage-gated calcium channels in CNS white matter: role in anoxic injury. J Neurophysiol 1995; 74(1): 369-77.
Leppanen, L. and P.K. Stys. Ion transport and membrane potential in CNS myelinated axons. II. Effects of metabolic inhibition. J Neurophysiol 1997; 78(4): 2095-107.
Brown, A.M., R.E. Westenbroek, W.A. Catterall, and B.R. Ransom. Axonal L-type Ca2+ channels and anoxic injury in rat CNS white matter. J Neurophysiol 2001; 85(2): 900-11.
Tekkok, S.B. and M.P. Goldberg. Ampa/kainate receptor activation mediates hypoxic oligodendrocyte death and axonal injury in cerebral white matter. J Neurosci 2001; 21(12): 4237-48.
Tekkok SB, B.E.a.R.B. Older adult animals and the mechanisms of ischemic white matter injury. Program No. 100.12. 2005 Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience, 2005.
B.R. Ransom, S.B.T. Perceptor pharmacology of excitotoxic injury in mouse optic nerve. in Program No. 100.13. 2005 Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience, 2005. 2005.
Ransom, B.R. and A.M. Brown. Intracellular Ca2+ release and ischemic axon injury: the Trojan horse is back. Neuron 2003; 40(1): 2-4.
Ouardouz, M., M.A. Nikolaeva, E. Coderre, et al. Depolarization-induced Ca2+ release in ischemic spinal cord white matter involves L-type Ca2+ channel activation of