Skip to main navigation menu Skip to main content Skip to site footer

Narrative Review

Vol. 4 No. 1 (1998)

Basic Mechanisms of Antibiotic Resistance: Molecular Properties of Multidrug Transporters

  • Hendrik W van Veen
  • Monique Putman
  • Wim van Klompenburg
  • Rene Heijne
  • Abelardo Margolles
  • Wil N Konings
DOI
https://doi.org/10.26443/mjm.v4i1.420
Submitted
October 29, 2020
Published
2020-12-01

Abstract

N/A

References

  1. Hughes JM, Tenover FC. Approaches to limiting emergence of antimicrobial resistance in bacteria in human populations. Clinical Infectious Diseases 24: S131-S135; 1997.
  2. Levy SB. The challenge of antibiotic resistance. Scientific American 278: 46-53; 1998.
  3. Perreten V, Schwarz F, Cresta L, et al. Antibiotic resistance spread in food. Nature 389: 801-802; 1997.
  4. Borst P, Ouellette M. New mechanisms of drug resistance in parasitic protozoa. Annual Review of Microbiology 49: 427- 460; 1995.
  5. Spratt BG. Resistance to antibiotics mediated by target alterations. Science 264: 388-393; 1994.
  6. Davies J. Inactivation of antibiotics and the dissemination of resistance genes. Science 264: 375-382; 1994.
  7. Nikaido H. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264: 382-388; 1994.
  8. Lewis K. Multidrug resistance pumps in bacteria: variations on a theme. Trends in Biochemical Sciences 19: 119-123; 1994.
  9. Balzi E, Goffeau A. Genetics and biochemistry of yeast multidrug resistance. Biochimica et Biophysica Acta 1187: 152-162; 1994.
  10. Higgins CF. ABC transporters: from microorganisms to man. Annual Review of Cell Biology 8: 67-113; 1992.
  11. Paulsen IT, Brown MH, Skurray RA. Proton-dependent multidrug efflux systems. Microbiological Reviews 60: 575- 608; 1996.
  12. Ben-Yaacov R, Knoller S, Caldwell GA, et al. The Candida albicans gene encoding resistance to benomyl and methotrexate is a multidrug resistance gene. Antimicrobial Agents and Chemotherapy 38: 648-652; 1994.
  13. Littlejohn TG, Paulsen IT, Gillespie MT, et al. Substrate specificity and energetics of antiseptic and disinfectant resistance in Staphylococcus aureus. FEMS Microbiology Letters 95: 259-266; 1992.
  14. Liu J, Takiff HE, Nikaido H. Active efflux of fluoroquinolones in Mycobacterium smegmatis mediated by LfrA, a multidrug efflux pump. Journal of Bacteriology 178: 3791-3795; 1997.
  15. Hagman KE, Pan W, Spratt BG, et al. Resistance of Neisseria gonorrhoeae to antimicrobial agents is modulated by the mtrRCDE efflux system. Microbiology 141: 611-622; 1995.
  16. Gründemann D, Gorboulev V, Gambaryan S, et al. Drug excretion mediated by a new prototype of polyspecific transporter. Nature 372: 549-552; 1994.
  17. Marger M, Saier MH. A major superfamily of transmembrane facilitators that catalyze uniport, symport and antiport. Trends in Biochemical Sciences 18: 13-20; 1993.
  18. Saier MH, Tam R, Reizer A, et al. Two novel families of bacterial membrane proteins concerned with nodulation, cell division and transport. Molecular Microbiology 11: 841-847; 1994.
  19. Paulsen IT, Skurray RA, Tam R, et al. The SMR family: a novel family of multidrug efflux proteins involved with the efflux of lipophilic drugs. Molecular Microbiology 19: 1167-1175; 1996.
  20. Bolhuis H, Poelarends G, van Veen HW, et al. The lactococcal lmrP gene encodes a proton motive force-dependent drug transporter. Journal of Biological Chemistry 270: 26092-26098; 1995.
  21. Poole K, Krebes K, McNally C, Neshat, S. Multiple antibiotic resistance in Pseudomonas aeruginosa evidence for involvement of
  22. an efflux operon. Journal of Bacteriology 175: 7363-7372; 1993.
  23. Dinh T, Paulsen IT, Saier MH. A family of extracytoplasmic proteins that allow transport of large molecules across the outer membranes of gram-negative bacteria. Journal of Bacteriology 176: 3825-3831; 1994.
  24. Yamaguchi A, Iwasaki-Ohba Y, Ono N, et al. Stoichiometry of
  25. metal-tetracycline/H+ antiport mediated by transposon Tn10- encoded tetracycline resistance protein. FEBS Letters 282: 415- 418; 1991.
  26. Bolhuis H, van Veen HW, Brands JR, et al. Energetics and mechanism of drug transport mediated by the lactococcal MDR transporter LmrP. Journal of Biological Chemistry 271: 24123- 24128; 1996.
  27. Yerushalmi H, Lebendiker M, Schuldiner S. EmrE, an Escherichia coli 12-kDa multidrug transporter, exchanges toxic cations and H+ and is soluble in organic solvents. Journal of Biological Chemistry 270: 6856-6863; 1995.
  28. Eckert B, Beck CF. Topology of the transposon Tn10-encoded tetracycline resistance protein within the inner membrane of Escherichia coli. Journal of Biological Chemistry 264: 11663- 11670; 1989.
  29. Yamaguchi A, Adachi K, Sawai T. Orientation of the carboxyl terminus of the transposon Tn10-encoded tetracycline resistance protein. FEBS Letters 265: 17-19; 1990.
  30. Allard JD, Bertrand KP. Membrane topology of the pBR322 tetracycline resistance protein. Journal of Biological Chemistry 267: 17809-17819; 1992.
  31. Kimura T, Ohnuma M, Sawai T, Yamaguchi. A. Membrane topology of the transposon 10-encoded metal-tetracycline/H+ antiporter as studied by site-directed chemical labeling. Journal of Biological Chemistry 272: 580-585; 1997.
  32. Rubin RA, Levy SB, Heinrikson RL, Kezdy FS. Gene duplication in the evolution of the two complementing domains of gram- negative tetracycline efflux proteins. Gene 87: 7-13; 1990.
  33. Curiale M, Levy SB. Two complementation groups mediate tetracycline resistance determined by Tn10. Journal of Bacteriology 151: 209-215; 1982.
  34. McNicholas P, McGlynn M, Guay GG, Rothstein DM. Genetic analysis suggests functional interactions between the N- and C- terminal domains of the TetA(C) efflux pump encoded by pBR322. Journal of Bacteriology 177: 5355-5357; 1995.
  35. Rubin RA, Levy SB. Interdomain hybrid Tet proteins confer tetracycline resistance only when derived from more closely related members of the tet gene family. Journal of Bacteriology 172: 2303-2312; 1990.
  36. Rubin RA, Levy SB. Tet protein domains interact productively to mediate tetracycline resistance when present on separate polypeptides. Journal of Bacteriology 173: 4503-4509; 1991.
  37. Paulsen IT, Brown MH, Dunstan SJ, Skurray RA. Molecular characterization of the staphylococcal multidrug resistance export protein QacC. Journal of Bacteriology 177: 2827-2833; 1995.
  38. Arkin IT, Russ WP, Lebendiker M, Schuldiner S. Determining the secondary structure and orientation of EmrE, a multidrug transporter, indicates a transmembrane four-helix bundle. Biochemistry 35: 7233-7238; 1996.
  39. Griffith JK, Baker ME, Rouch DA, et al. Membrane transport proteins: implications of sequence comparisons. Current Opinion in Cell Biology 4: 684-695; 1992.
  40. Gottesman MM, Hrycyna CA, Schoenlein PV, et al. Genetic analysis of the multidrug transporter. Annual Review of Genetics. 29: 607-649; 1995.
  41. Paulsen IT, Brown MH, Littlejohn TG, et al. Multidrug resistance proteins QacA and QacB from Staphylococcus aureus: membrane topology and identification of residues involved in substrate specificity. Proceedings of the National Academy of Sciences (USA) 93: 3630-3635; 1996.
  42. Ahmed M, Borsch CM, Neyfakh AA, Schuldiner S. Mutants of the Bacillus subtilis multidrug transporter Bmr with altered sensitivity to the antihypertensive alkaloid reserpine. Journal of Biological Chemistry 268: 11086-11089; 1993.
  43. Klyachko KA, Schuldiner S, Neyfakh AA. Mutations affecting substrate specificity of the Bacillus subtilis multidrug transporter Bmr. Journal of Bacteriology 179: 2189-2193; 1997.
  44. Dougherty DA. Cation-p interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp. Science 271: 163- 168; 1996.
  45. Popkov M, Lussier I, Medvedkine V, et al. Multidrug-resistance drug-binding peptides generated by using a phage display library. European Journal of Biochemistry 251: 155-163; 1998.
  46. Gottesman MM, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annual Review of Biochemistry 62: 385-427; 1993.
  47. Cole SPC, Bhardwaj G, Gerlach JH, et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258: 1650-1654; 1992.
  48. Wilson CM, Serrano AE, Wasley A, et al. Amplification of a gene related to mammalian mdr genes in drug-resistant Plasmodium falciparum. Science 244: 1184-1186; 1989.
  49. Descoteaux S, Ayala P, Orozco E, Samuelson J. Primary sequences of two P-glycoprotein genes in Entamoeba histolytica. Molecular and Biochemical Parasitology 54: 201- 212; 1992.
  50. Henderson DM, Sifri CD, Rodgers M, et al. Multidrug resistance in Leishmania donovani is conferred by amplification of a gene homologous to the mammalian mdr1 gene. Molecular and Cellular Biology 12: 2855-2865; 1992.
  51. Prasad R, de Wergifosse P, Goffeau A, Balzi E. Molecular cloning and characterization of a novel gene of Candida albicans conferring multiple resistance to drugs and antifungals. Current Genetics 27: 320-329; 1995.
  52. Balzi E, Wang M, Leterme S, et al. Pdr5, a novel yeast multidrug resistance conferring transporter controlled by the transcription regulator Pdr1. Journal of Biological Chemistry 269: 2206- 2214; 1994.
  53. Decottignies A, Lambert L, Catty P, et al. Identification and characterization of Snq2, a new multidrug ATP binding cassette transporter of the yeast plasma membrane. Journal of Biological Chemistry 270: 18150-18157; 1995.
  54. Guilfoile PG, Hutchinson CR. A bacterial analog of the mdr gene of mammalian tumour cells is present in Streptomyces peuceticus, the producer of daunorubicin and doxorubicin. Proceedings of the National Academy of Sciences (USA) 88: 8553-8557; 1991.
  55. Méndez C, Salas JA. ABC transporters in antibiotic-producing actinomycetes. FEMS Microbiology Letters 158: 1-8; 1998.
  56. van Veen HW, Venema K, Bolhuis H, et al. Multidrug resistance mediated by a bacterial homolog of the human multidrug transporter MDR1. Proceedings of the National Academy of Sciences (USA) 93: 10668-10672; 1996.
  57. Felmlee T, Pellett S, Welch RA. Nucleotide sequence of an Escherichia coli chromosomal hemolysin. Journal of Bacteriology 163: 94-105; 1985.
  58. Berkower C, Michaelis S. Mutational analysis of the yeast a- factor transporter STE6, a member of the ATP binding cassette (ABC) protein superfamily. EMBO Journal 10: 3777-3785; 1991.
  59. Sami M, Yamashita H, Hirono T, et al. Hop-resistant Lactobacillus brevis contains a novel plasmid harboring a multidrug resistance-like gene. Journal of Fermentation and
  60. Bioengineering 84: 1-6; 1997.
  61. van Veen HW, Konings WN. The ABC family of multidrug transporters in microorganisms. Biochimica et Biophysica Acta 1365: 31-36; 1998.
  62. Deeley RG, Cole SPC. Function, evolution and structure of multidrug resistance protein (MRP). Seminars in Cancer Biology 8: 193-204; 1997.
  63. Li Z-S, Szczypka M, Lu Y-P, et al. The yeast cadmium factor protein (Ycf1) is a vacuolar glutathione S-conjugate pump. Journal of Biological Chemistry 271: 6509-6517; 1996.
  64. Li Z-S, Lu Y-P, Zhen R-G, et al. A new pathway for cadmium sequestration in Saccharomyces cerevisiae: YCF-1 catalyzed transport of bis(glutathionato)cadmium. Proceedings of the National Academy of Sciences (USA) 94: 42-47; 1997.
  65. Cui Z, Hirata D, Tsuchiya E, et al. The multidrug resistance- associated protein (MRP) subfamily (Yrs1/Yor1) of Saccharomyces cerevisiae is important for the tolerance to a broad range of organic anions. Journal of Biological Chemistry 271: 14712-14716; 1996.
  66. Callahan HL, Beverley SM. Heavy metal resistance: a new role of P-glycoproteins in Leishmania. Journal of Biological Chemistry 266: 18427-18436; 1991.
  67. Grondin K, Haimeur A, Mukhopadhyay R, et al. Co-amplification of the g-glutamylcysteine synthetase gene gsh1 and of the ABC transporter gene pgpA in arsenite-resistant Leishmania tarentolae. EMBO Journal 16: 3057-3065; 1997.
  68. Broeks A, Gerrard B, Allikmets R, et al. Homologues of the human multidrug resistance genes MRP and MDR contribute to heavy metal resistance in the soil nematode Caenorhabditis elegans. EMBO Journal 15: 6132-6143; 1996.
  69. Ortiz DF, St Pierre MV, Abdulmessih A, Arias IM. A yeast ATP- binding cassette-type protein mediating ATP-dependent bile acid transport. Journal of Biological Chemistry 272: 15358- 15365; 1997.
  70. Molenaar D, Bolhuis H, Abee T, et al. The efflux of a fluorescent probe is catalyzed by an ATP-driven extrusion system in Lactococcus lactis. Journal of Bacteriology 174: 3118-3124; 1992.
  71. Choi K, Chen C, Kriegler M, Roninson IB. An altered pattern of cross-resistance in multidrug-resistant human cells results from spontaneaous mutations in the mdr1 (P-glycoprotein) gene. Cell 53: 519-529; 1988.
  72. Kioka N, Tsubota J, Kakehi Y, et al. P-glycoprotein gene (MDR1) cDNA from human adrenal: normal P-glycoprotein carries Gly-185 with an altered pattern of multidrug resistance. Biochemical and Biophysical Research Communications 162: 224; 1989.
  73. Kwan T, Gros P. Mutational analysis of the P-glycprotein first intracellular loop and flanking transmembrane domains. Biochemistry 37: 3337-3350; 1998.
  74. Loo TW, Clarke DM. Functional consequences of glycine mutation in the predicted cytoplasmic loops of P-glycoprotein. Journal of Biological Chemistry 269: 7243-7248; 1994.
  75. Loo TW, Clarke DM. Functional consequences of phenylalanine mutations in the predicted transmembrane domains of P- glycoprotein. Journal of Biological Chemistry 268: 19965- 19972; 1993.
  76. Loo TW, Clarke DM. Mutation of amino acids located in predicted transmembrane domain segment 6 (TM6) modulate the activity and substrate specificity of human P-glycprotein. Biochemistry 33: 14049-14057; 1994.
  77. Loo TW, Clarke DM. Functional consequences of proline mutations in the transmembrane domain of P-glycoprotein. Journal of Biological Chemistry 268: 3143-3149; 1993.
  78. Hanna M, Brault M, Kwan T, et al. Mutagenesis of transmembrane domain 11 of P-glycoprotein by alanine scanning. Biochemistry 35: 3625-3635; 1996.
  79. Kajiji S, Talbot F, Grizzuti K, et al. Functional analysis of P-glycoprotein mutants identifies predicted transmembrane domain 11 as a putative drug binding site. Biochemistry 32: 4185-4194; 1993.
  80. Gros P, Dhir R, Croop J, Talbot F. A single amino acid substitution strongly modulates the activity and substrate specificity of the mouse mdr1 and mdr3 drug efflux pumps. Proceedings of the National Academy of Sciences (USA) 88: 7289-7293; 1991.
  81. Taguchi Y, Kino K, Morishima M, et al. Amino acid substitutions in the first transmembrane domain (TM1) of P-glycoprotein alter substrate specificity. Biochemistry 36: 8883-8889; 1997.
  82. Hoof T, Demmer A, Hadam MR, et al. Cystic fibrosis-type mutational analysis in the ATP-binding cassette transporter of P- glycoprotein. Journal of Biological Chemistry 269: 20575- 20583; 1994.
  83. Beaudet L, Gros P. Functional dissection of P-glycoprotein nucleotide-binding domains in chimeric and mutant proteins. Journal of Biological Chemistry 270: 17159-17170; 1995.
  84. Currier SJ, Kane SE, Willingham MC, et al. Identification of residues in the first cytoplasmic loop of P-glycoprotein involved in the function of chimeric human MDR1-MDR2 transporters. Journal of Biological Chemistry 267: 25153-25159; 1992.
  85. Dhir R, Gros P. Functional analysis of chimeric proteins constructed by exchanging homologous domains of two P- glycoproteins conferring distinct drug resistance profiles. Biochemistry 31: 6103-6110; 1992.
  86. Zhang X, Collins KI, Greenberger LM. Functional evidence that transmembrane 12 and the loop between transmembrane 11 and 12 form part of the drug-binding domain in P-glycoprotein encoded by MDR1. Journal of Biological Chemistry 270: 5441- 5448; 1995.
  87. Smit JJM, Schinkel AH, Oude Elferink RPJ, et al. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 75: 451-462; 1993.
  88. Smith AJ, Timmermans-Hereijgers JLPM, Roelofsen B, et al. The human MDR3 P-glycoprotein promotes translocation of phosphatidyl choline through the plasma membrane of fibroblasts from transgenic mice. FEBS Letters 354: 263-266; 1994.
  89. Raymond M, Gros P, Whiteway M, Thomas DY. Functional complementation of yeast ste6 by a mammalian multidrug resistance mdr gene. Science 256: 232-234; 1992.
  90. Volkman SK, Cowman AF, Wirth DF. Functional complementation of the ste6 gene of Saccharomyces cerevisiae with the pfmdr1 gene of Plasmodium falciparum. Proceedings of the National Academy of Sciences (USA) 92: 8921-8925; 1995.
  91. Tommasini R, Evers R, Vogt E, et al. The human multidrug resistance-associated protein functionally complements the yeast cadmium resistance factor 1. Proceedings of the National Academy of Sciences (USA) 93: 6743-6748; 1996.
  92. Ruetz S, Brault M, Kast C, et al. Functional expression of the multidrug resistance-associated protein in the yeast Saccharomyces cerevisiae. Journal of Biological Chemistry 271: 4154-4160; 1996
  93. van Veen HW, Callaghan R, Soceneantu L, et al. A bacterial antibiotic resistance gene that complements the human multidrug resistance P-glycoprotein gene. Nature 391: 291-295; 1998.
  94. Martin C, Berridge G, Higgins CF, Callaghan R. The multidrug resistance reversal agent SR33557 and modulation of vinca alkaloid binding to P-glycoprotein by an allosteric interaction. British Journal of Pharmacology 122: 765-771; 1997.
  95. Altenberg GA, Vanoye CG, Horton JK, Reuss L. Unidirectional fluxes of rhodamine 123 in multidrug resistant cells: evidence against direct extrusion from the plasma membrane. Proceedings of the National Academy of Sciences (USA) 91: 4654-4657; 1994.
  96. Raviv Y, Pollard HB, Bruggeman EP, et al. Photosensitized labeling of a functional multidrug transporter in living drug resistant tumor cells. Journal of Biological Chemistry 265: 3975-3980; 1990.
  97. Higgins CF, Gottesman MM. Is the multidrug transporter a flippase? Trends in Biochemical Sciences 17: 18-21; 1992.
  98. Bolhuis H, van Veen HW, Molenaar D, et al. Multidrug
  99. resistance in Lactococcus lactis: evidence for ATP-dependent drug extrusion from the inner leaflet of the cytoplasmic membrane. EMBO Journal 15: 4239-4245; 1996.
  100. Greenberger LM. Major photoaffinity drug labeling sites for iodoaryl azidoprazosin in P-glycoprotein are within, or immediately C-terminal to, transmembrane domains 6 and 12. Journal of Biological Chemistry 268: 11417-11425; 1993.
  101. Morris DI, Greenberger LM, Bruggeman EP, et al. Localization of the forskolin labeling sites for both halves of P-glycoprotein: similarity of the sites labeled by forskolin and prazosin. Molecular Pharmacology 46: 329-337; 1994.
  102. Germann UA. P-glycoprotein - a mediator of multidrug resistance in tumour cells. European Journal of Cancer 32A: 927-944; 1996.
  103. Homolya L, Holló Z, Germann UA, et al. Fluorescent cellular indicators are extruded by the multidrug resistance protein. Journal of Biological Chemistry 268: 21493-21496; 1993.
  104. Shapiro AB, Ling V. P-glycoprotein-mediated Hoechst 33342 transport out of the lipid bilayer. European Journal of Biochemistry 250: 115-121; 1997.
  105. Shapiro AB, Ling V. Extraction of Hoechst 33342 from the cytoplamsic leaflet of the plasma membrane by P-glycoprotein. European Journal of Biochemistry 250: 122-129; 1997.
  106. Ruetz S, Gros P. Phosphatidylcholine translocase: a physiological role for the mdr2 gene. Cell 77: 1071-1081; 1994.
  107. Zhang F, Yin Y, Arrowsmith CH, Ling V. Secretion and circular dichroism analysis of the C-terminal signal peptides of HlyA and LktA. Biochemistry 34: 4193-4201; 1995.
  108. Sheps JA, Cheung I, Ling V. Hemolysin transport in Escherichia coli: point mutations in HlyB compensate for a deletion in the predicted amphiphilic helix regions of the HlyA signal. Journal of Biological Chemistry 270: 14829-14834; 1995.
  109. Schinkel AH, Smit JJ, van Tellingen O, et al. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77: 491-502; 1994.
  110. Sikkema J, de Bont J, Poolman B. Mechanisms of membrane toxicity of hydrocarbons. Microbiological Reviews 59: 201-222; 1995.
  111. Ma D, Cook DN, Alberti M, et al. Genes acrA and acrB encode a stress-induced efflux system of Escherichia coli. Molecular Microbiology 16: 45-55; 1995.
  112. Thanassi DG, Cheng LW, Nikaido H. Active efflux of bile salts by Escherichia coli. Journal of Bacteriology 179: 2512-2518; 1997.
  113. van Helvoort A , Smith AJ, Sprong H, et al. MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell 87: 507-517; 1996.
  114. Bosch I, Dunussi-Joannopoulos K, Wu R-L, et al. Phosphatidylcholine and phosphatidylethanolamine behave as substrates of the human MDR1 P-glycoprotein. Biochemistry 36: 5685-5694; 1997.
  115. Alloing G, Granadel C, Morrison DA, Claverys J-P. Competence pheromone, oligopeptide permease, and induction of competence in Streptococcus pneumoniae. Molecular Microbiology 21: 471-478; 1996.
  116. Perego M. A peptide export-import control circuit modulating bacterial development regulates protein phosphatases of the phosphorelay. Proceedings of the National Academy of Sciences (USA) 94: 8612-8617; 1997.
  117. Höltje J-V. Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiology and Molecular Biology Reviews 62: 181-203; 1998.

Downloads

Download data is not yet available.