Published 2025-06-01
Keywords
- Meta-analysis,
- Protocol,
- Spaceflight,
- Data Management
How to Cite
Copyright (c) 2025 Matthew Goldsmith, Svetlana Komarova

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Abstract
Information management is a key part of conducting a systematic review and meta-analysis. Preferred Reporting Items for Systematic Reviews and Meta-Analyses clearly summarizes essential steps during the meta-analytic project and their reporting. Preparing for data extraction is generally suggested to be done at the stage of the protocol. However, in complex projects that aim to synthesize data from studies performed over a long time period or with a wide variability in study protocols, it is often impossible to fully account for all variations in data presentation before completing the full text screening. Here, we describe a protocol to methodically consider different aspects of the selected studies in order to update the data extraction template for the meta-analytic portion of the project. The protocol incorporates a process of identifying and removing non-compatible studies prior to the extraction of study-level outcomes, which is important for avoiding a potential confirmation bias. Using this protocol in combination with a pre-established data coding scheme simplifies data extraction and informs the subsequent meta-analysis.
Downloads
References
- Borenstein M, Higgins JP. Meta-analysis and subgroups. Prevention science : the official journal of the Society for Prevention Research. 2013;14(2):134-43. DOI:10.1007/s11121-013-0377-7
- Mikolajewicz N, Komarova SV. Meta-Analytic Methodology for Basic Research: A Practical Guide. Front Physiol. 2019;10:203. DOI:10.3389/fphys.2019.00203
- Johnson BT, Hennessy EA. Systematic reviews and meta-analyses in the health sciences: Best practice methods for research syntheses. Social science & medicine (1982). 2019;233:237-51. DOI:10.1016/j.socscimed.2019.05.035
- Page MJ, Moher D, McKenzie JE. Introduction to preferred reporting items for systematic reviews and meta-analyses 2020 and implications for research synthesis methodologists. Research synthesis methods. 2022;13(2):156-63. DOI:10.1002/jrsm.1535
- Hoffmann TC, Glasziou PP, Boutron I, Milne R, Perera R, Moher D, et al. Better reporting of interventions: template for intervention description and replication (TIDieR) checklist and guide. BMJ (Clinical research ed). 2014;348:g1687. DOI:10.1136/bmj.g1687
- Pedder H, Sarri G, Keeney E, Nunes V, Dias S. Data extraction for complex meta-analysis (DECiMAL) guide. Systematic reviews. 2016;5(1):212. DOI:10.1186/s13643-016-0368-4
- Steer K, Stavnichuk M, Morris M, Komarova SV. Bone Health in Patients With Hematopoietic Disorders of Bone Marrow Origin: Systematic Review and Meta- Analysis. J Bone Miner Res. 2017;32(4):731-42. DOI:10.1002/jbmr.3026
- Stavnichuk M, Mikolajewicz N, Corlett T, Morris M, Komarova SV. A systematic review and meta-analysis of bone loss in space travelers. NPJ Microgravity. 2020;6:13. DOI:10.1038/s41526-020-0103-2
- Fu J, Goldsmith M, Crooks SD, Condon SF, Morris M, Komarova SV. Bone health in spacefaring rodents and primates: systematic review and meta-analysis. NPJ Microgravity. 2021;7(1):19. DOI:10.1038/s41526-021-00147-7
- Goldsmith M, Crooks SD, Condon SF, Willie BM, Komarova SV. Bone strength and composition in spacefaring rodents: systematic review and meta-analysis. NPJ Microgravity. 2022;8(1):10. DOI:10.1038/s41526-022-00195-7
- Moussa MS, Goldsmith M, Komarova SV. Craniofacial Bones and Teeth in Spacefarers: Systematic Review and Meta-analysis. JDR Clin Trans Res. 2022:23800844221084985. DOI:10.1177/23800844221084985
- Mikolajewicz N, Mohammed A, Morris M, Komarova SV. Mechanically stimulated ATP release from mammalian cells: systematic review and meta-analysis. J Cell Sci. 2018;131(22). DOI:10.1242/jcs.223354
- McKee TJ, Perlman G, Morris M, Komarova SV. Extracellular matrix composition of connective tissues: a systematic review and meta-analysis. Sci Rep. 2019;9(1):10542. DOI:10.1038/s41598-019-46896-0
- Dsouza C, Komarova SV. Characterization of Potency of the P2Y13 Receptor Agonists: A Meta-Analysis. Int J Mol Sci. 2021;22(7). DOI:10.3390/ijms22073468
- Mikolajewicz N, Bishop N, Burghardt AJ, Folkestad L, Hall A, Kozloff KM, et al. HR-pQCT Measures of Bone Microarchitecture Predict Fracture: Systematic Review and Meta-Analysis. J Bone Miner Res. 2020;35(3):446-59. DOI:10.1002/jbmr.3901
- Schardt C, Adams MB, Owens T, Keitz S, Fontelo P. Utilization of the PICO framework to improve searching PubMed for clinical questions. BMC Med Inform Decis Mak. 2007;7:16. DOI:10.1186/1472-6947-7-16
- Buccheri RK, Sharifi C. Critical Appraisal Tools and Reporting Guidelines for Evidence-Based Practice. Worldviews Evid Based Nurs. 2017;14(6):463-72. DOI:10.1111/wvn.12258
- Mikolajewicz N, Sehayek S, Wiseman PW, Komarova SV. Transmission of Mechanical Information by Purinergic Signaling. Biophys J. 2019;116(10):2009-22. DOI:10.1016/j.bpj.2019.04.012
- Maupin KA, Childress P, Brinker A, Khan F, Abeysekera I, Aguilar IN, et al. Skeletal adaptations in young male mice after 4 weeks aboard the International Space Station. npj Microgravity. 2019;5(1):21. DOI:10.1038/s41526-019-0081-4
- Dadwal UC, Maupin KA, Zamarioli A, Tucker A, Harris JS, Fischer JP, et al. The effects of spaceflight and fracture healing on distant skeletal sites. Scientific Reports. 2019;9(1):11419. DOI:10.1038/s41598-019-47695-3
- Lloyd SA, Morony SE, Ferguson VL, Simske SJ, Stodieck LS, Warmington KS, et al. Osteoprotegerin is an effective countermeasure for spaceflight-induced bone loss in mice. Bone. 2015;81:562-72. DOI:10.1016/j.bone.2015.08.021
- Ortega AM, Bateman TA, Livingston EW, Paietta RC, Gonzalez SM, Stodieck LS, et al. Spaceflight Related Changes in Structure and Strength of Mouse Trabecular and Cortical Bone From the STS-118 Space Shuttle Mission. Proceedings of ASME 2013 Summer Bioengineering Conference; Sunriver, Oregon, USA. V01AT08A0052013.
- Tavella S, Ruggiu A, Giuliani A, Brun F, Canciani B, Manescu A, et al. Bone turnover in wild type and pleiotrophin-transgenic mice housed for three months in the International Space Station (ISS). PLoS One. 2012;7(3):e33179. DOI:10.1371/journal.pone.0033179
- Blaber EA, Dvorochkin N, Lee C, Alwood JS, Yousuf R, Pianetta P, et al. Microgravity induces pelvic bone loss through osteoclastic activity, osteocytic osteolysis, and osteoblastic cell cycle inhibition by CDKN1a/p21. PLoS One. 2013;8(4):e61372. DOI:10.1371/journal.pone.0061372
- Blaber EA, Dvorochkin N, Torres ML, Yousuf R, Burns BP, Globus RK, et al. Mechanical unloading of bone in microgravity reduces mesenchymal and hematopoietic stem cell-mediated tissue regeneration. Stem Cell Research. 2014;13(2):181-201. DOI:10.1016/j.scr.2014.05.005
- Berg-Johansen B, Liebenberg EC, Li A, Macias BR, Hargens AR, Lotz JC. Spaceflight-induced bone loss alters failure mode and reduces bending strength in murine spinal segments. J Orthop Res. 2016;34(1):48-57. DOI:10.1002/jor.23029
- Gerbaix M, Gnyubkin V, Farlay D, Olivier C, Ammann P, Courbon G, et al. One-month spaceflight compromises the bone microstructure, tissue-level mechanical properties, osteocyte survival and lacunae volume in mature mice skeletons. Sci Rep. 2017;7(1):2659. DOI:10.1115/SBC2013-14785
- Gerbaix M, White H, Courbon G, Shenkman B, Gauquelin-Koch G, Vico L. Eight Days of Earth Reambulation Worsen Bone Loss Induced by 1-Month Spaceflight in the Major Weight-Bearing Ankle Bones of Mature Mice. Front Physiol. 2018;9:746. DOI:10.3389/fphys.2018.00746
- Shiba D, Mizuno H, Yumoto A, Shimomura M, Kobayashi H, Morita H, et al. Development of new experimental platform 'MARS'-Multiple Artificial-gravity Research System-to elucidate the impacts of micro/partial gravity on mice. Scientific reports. 2017;7(1):10837. DOI:10.1038/s41598-017-10998-4
- Tominari T, Ichimaru R, Taniguchi K, Yumoto A, Shirakawa M, Matsumoto C, et al. Hypergravity and microgravity exhibited reversal effects on the bone and muscle mass in mice. Sci Rep. 2019;9(1):6614. DOI:10.1038/s41598-019-42829-z