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Introduction 
     Major Depression is a debilitating health condition 
that affects 11.1% of people over the course of their 
lives and is responsible for the majority of Disability 
Adjusted Life Years (DALYs) lost globally [1,2]. At any 
one time, over 322 million people around the world  

  
  
struggle with depression [3]. Depression causes 
significant suffering and entails high treatment and 
social costs [4,5]. While seeking professional help for 
depression is indeed a step towards recovery, mental 
health professionals and the patients they work with 
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face another challenge: selecting the best treatment. 
Though a range of effective medications, therapies, 
and other treatments do exist, these are not 
equivalently effective for all patients. Some patients 
can spend years finding the right choice or 
combination from the dozens of available medications, 
multiple psychotherapies, and several 
neurostimulation techniques (e.g. repetitive 
Transcranial Magnetic Stimulation (rTMS), transcranial 
direct current stimulation (tDCS), and deep brain 
stimulation (DBS)). Currently, most patients and their 
physicians have little option but to undergo an 
educated “guess and check” approach to finding the 
right treatment. In the large Sequenced Treatment 
Alternatives to Relieve Depression (STAR*D) study, 
only about one third of patients improved after the first 
step of treatment in the trial, with decreasing response 
rates after further steps [6]. The decision about which 
treatment to try is one with significant consequences. 
In addition, different patients develop varying side 
effects to the same medication in an unpredictable 
manner, which further complicates treatment choice 
[7]. 
 
      As such, a research objective in this domain should 
be to develop an evidence-based approach to rapidly 
select the most effective treatment for any given 
patient, as early on in their clinical course as possible, 
whilst minimizing side effects that lead to reduced 
quality of life or poor treatment adherence. Existing 
guidelines do categorize the large array of treatment 
options into first-, second-, and third-line treatments 
[7]. However, doctors lack a systematic, evidence-
based tool for mental health conditions that helps 
clinicians choose treatments in a way that is 
personalized to each given patient [7,8,9,10]. Indeed, 
the most important study of comparative treatment 
efficacy to date, a meta-analysis of twenty-one 
antidepressants by Cipriani et al. [11], was unable to 
make any clear recommendations regarding the 
personalization of treatment. In this commentary 
article, the possibility of using deep learning as a 
solution to this problem will be discussed. 
 
Deep Learning: A Possible Solution? 
     A clinical decision tool is a potential solution to the 
aforementioned problem. The tool would synthesize 
both existing and newly-recorded data with the aim of 
producing treatment recommendations to optimize 
symptom remission while mitigating adverse side 
effects. This can be framed as a classification problem 
that could be solved through a machine learning 
approach. Machine learning is the use of algorithms to 
learn patterns in often large datasets, sometimes in 

order to make predictions about new pieces of data 
(i.e. learning about previous weather patterns to make 
predictions about future weather). These approaches 
can be as simple as classical linear or logistic 
regression, or as complex as multi-layered artificial 
neural networks, known as deep learning (DL) [12]. 
Artificial neural networks (ANN) have existed for 
decades in the form of the archetypal multilayer 
perceptron [13]. Due to limited computing capabilities 
and already superior performance by standard 
statistical methods, research into artificial networks 
slowed for decades [14]. However, recent advances 
[14] have led to an explosion of applications using DL 
[15]. DL works by passing information through several 
layers of weighted artificial neurons [12], producing 
increasingly abstract representations of relationships 
between variables in the original dataset [16]. The 
problem that comes with deeper networks is that while 
they can capture more complex relationships between 
features, the gradient-based training procedure’s error 
signal can either attenuate or magnify in a manner that 
can impede training. Superficial layers either learn very 
slowly, if at all (i.e., vanishing gradients), or much too 
quickly when compared to ‘deeper’ layers (i.e. 
exploding gradients). Several approaches, beyond the 
scope of this paper, have been developed to solve this 
problem. 
 
     Why use DL? This method has the tendency to 
overfit, or to produce solutions that fit the training data 
but fail to generalize to other data [17]. It also suffers 
from the black box problem: results provided by DL 
networks are difficult for humans to interpret, which is 
not as much of a problem with other approaches like 
decision trees. We will discuss possible solutions to 
this problem below. However, besides having 
surpassed other methods in a variety of tasks [12], DL 
has two distinct advantages. Firstly, it remains robust 
in the face of noisy or incomplete datasets [18,19], 
which are common in psychiatry. Secondly, the failure 
of simple models to explain or predict psychiatric 
phenomena speaks accurately to a complexity [20] of 
which DL may be able to capture through its 
increasingly abstract data representations [5]. 
 
     Generally, to train deep networks large datasets are 
required. For prediction of response to depression 
treatment, these datasets could include information 
such as socio-demographic factors, symptom profiles, 
and previous response to treatment, as well as genetic, 
metabolic, endocrine, immunological, and 
neuroimaging data. Moreover, the training datasets 
must include valid outcome measures. Therefore, 
clinical trials and treatment research studies are of 
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significant interest. Another potential source of data are 
clinics that employ measurement-based patient care or 
structure clinical data collection in a manner which 
facilitates machine learning for outcome prediction. 
Despite its established efficacy, measurement-based 
care is not routinely implemented in psychiatry, thereby 
limiting the amount of available data [21]. Other clinical 
data (i.e., extant medical records) may not be optimal 
data for training because they are often incomplete and 
lack the same rigorous outcome measures as 
controlled trial data or data collected for machine 
learning applications. 
 
     Collecting sufficient data for DL is challenging. 
Producing data de novo that is conducive to machine 
learning requires extensive clinical partnerships and 
years of collection, a route being explored by the 
Alphabet-owned company Verily [22]. However, large, 
and well-designed clinical trials can be prohibitively 
expensive. For example, the STAR*D trial cost 35 
million dollars (USD) and enrolled 4041 patients – a 
sizeable number, but below the tens of thousands of 
patients required for a machine learning application to 
make reliable predictions for a patient’s response to all 
available treatments [23]. For datasets large enough for 
machine learning, this leaves data collected by industry 
and researchers, which is often difficult to access, 
though recent open data initiatives such as the National 
Institutes of Mental Health Data Archive have facilitated 
this. The fact that little standardization exists between 
datasets means that data pooling for the purposes of 
machine learning remains a challenge [24]. 
 

 
 
While there is ongoing effort to identify single 
biomarkers that could reliably and accurately predict 
response to treatment, none have emerged [25]. A 
more fruitful strategy may be to define a panel of 
biomarkers and clinical questions, which, together, 
might provide more reliable and accurate predictions of 

treatment response when fed into a DL system as input 
features [25]. 
 
Implementation of Artificial Intelligence 
(AI) Technology 
     In order to capture clinical response patterns in a 
population of individuals with complex medical and 
personal histories and biological profiles, a predictive 
model must be trained on complex and heterogeneous 
data. Having a dataset of sufficient complexity is 
necessary to help the model generalize to real life 
clinical populations-- using unrepresentative data 
would be a source of bias [26]. One DL approach to 
such a dataset would be to use a feed-forward stacked 
denoising autoencoder (SDA) [5], which consists of a 
series of context-learning layers. The general 
architecture of the autoencoder is composed of the 
encoder (e.g., E(x)) and decoder (e.g. D(x)) and is 
defined as follows: the dataset, x, gets mapped to a 
learned latent space E(x). Using the decoder, D(E(x)) is 
then mapped back to the original x. The features 
learned in E(x) are a subset of the original, meaning that 
the ANN constructs representations of the interactions 
between input features. Pairing an SDA with a 
discriminative model (such as another ANN) allows for 
greater depth (i.e., numbers of layers) over standard 
feedforward neural networks, resulting in higher-order 
representations of data and an appreciation of more 
complex relationships between variables. It should be 
noted that recent developments in other approaches, 
such as generative adversarial networks (GANs), are 
not necessarily suited to our purpose. This is because 
they are designed to create artificial data samples that 
remain representative of the training data. Training on 
artificially generated patient data might skew further 
analyses. 
 
      The training technique for an SDA involves two 
steps: unsupervised learning followed by supervised 
learning. Unsupervised learning provides the network 
with contextual information about data by allowing it to 
autonomously explore latent groupings and 
dependencies - this trains the auto-encoder layers 
mentioned above. Supervised learning asks the 
network to take inputs, run them through the previously 
trained autoencoder layers, and maximize a specific 
output target - a process optimized by the network’s 
underlying knowledge of the dataset acquired during 
unsupervised learning [5]. Unsupervised learning may 
be effectively applied to unstructured data such as 
electronic medical records. Doing so might then 
improve supervised learning on more structured data 
with rigorous outcome measurement, like clinical trial 
data. In this way, both structured clinical data and 
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unstructured electronic medical records may be 
processed and used to improve outcome prediction. 
 
     Patient outcomes would be assessed in terms of 
validated depression rating scales. Standard validation 
assessments could be used to critically examine all 
aspects of the classifier, including its vulnerabilities. 
These methods include computation of the sensitivity, 
specificity, positive predictive value, negative 
predictive value, accuracy, and the receiver operating 
curve (ROC) [27] along with the area under the ROC 
(AUC). To ensure model validity, k-fold cross validation 
could also be implemented [28]. As well, dropout 
should be implemented during training to prevent 
overfitting and to improve generalizability. Dropout 
refers to the practice of occasionally excluding artificial 
neurons during training to prevent over-reliance on 
certain nodes [29]. Clinicians require interpretability in 
their decision-making tools. Interpretation of DL 
models has been traditionally difficult due to their 
increasingly abstract internal representations of 
information. Failing to provide easily interpretable 
results of the model’s decisions may compromise 
clinician trust and technology adoption. Nevertheless, 
certain tools for interpretability do exist and continue to 
improve as DL is applied towards the clinical domain 
[30]. For example, the authors of [31] used a DL model 
to “teach” a gradient boosted tree model to predict 
mortality in an ICU, which produced a model that 
benefits from the power of a DL model and the 
interpretability of a gradient boosted tree model. 
 
     Several other interpretability methods exist, 
including validating the final model input features by 
relating them to existing literature and using receptive 
field analysis on all layers in the network to gain a sense 
of low-level feature groupings [32,33]. Moreover, 
saliency map generation may elucidate features from 
the input data sample that most significantly contribute 
to network prediction [34]. Such clusters may 
correspond to similarities between certain patient 
types extracted via t-Distributed Stochastic Neighbor 
Embedding (t-SNE) [35]. Some of the feature clusters 
identified may even spawn novel research avenues. 
Interpretability tools such as these can produce reports 
explaining the most salient features in the making of a 
given decision. This provides a level of detail familiar to 
mental health clinicians, similar to analyses looking at 
risk factors for different conditions which cannot 
always definitively explain causal links. 
 
     Targeting response to treatment in depression gives 
rise to several challenges. For example, there is 
significant debate about the nosology of depression. 

Anxiety is often comorbid with depression but is not 
part of the diagnostic criteria for the disorder [36]. To 
avoid the pitfalls associated with diagnostic validity 
when selecting the features to be used in a machine 
learning model, it is possible to adopt a “dimensional 
approach” [37] - that is, by focusing on symptoms and 
other patient features independently of the actual 
diagnosis (assuming, of course, that non-psychiatric 
causes of symptoms such as fatigue (e.g. 
hypothyroidism or anemia) have been ruled out or are 
not suspected). Another consideration is the temporally 
sensitive nature of response to treatment - that is, it 
may not be possible to predict treatment response 
solely from patient features at baseline, but also from 
observations shortly following treatment initiation. This 
is especially relevant to psychotherapy, where the 
strength of the relationship with the therapist - and not 
the individual patient or treatment features [38] - is 
most predictive of outcome. In this case, two machine 
learning models could be used. The first could predict 
whether the patient is likely to respond to 
psychotherapy based on data from patients who had a 
good relationship with their therapist (i.e. the ‘best 
case’ scenario). A few weeks into treatment, a second 
model would evaluate the actual patient-therapist 
relationship amongst other factors that predict 
response.  
 
 
Potential Impact 
      Should a predictive model withstand clinical 
validation, it would be among the first personalized 
medicine tools in mental health specifically designed 
for use by clinicians. This solution has the potential to 
reduce the disappointingly high rate of failure to reach 
remission, as seen in the STAR*D trial [6]. It is difficult 
to ascertain the potential reduction of treatment failure 
rate prior to clinical testing. However, a recent machine 
learning approach using random forests [39] has 
attained some success in identifying patients who have 
attempted suicide (AUC = 0.84, precision = 0.79, recall 
= 0.95) using electronic medical records. The authors 
of [39] use a technique called bootstrap optimism to 
reduce overfitting and find that their predictions 
became more accurate closer in time to the actual 
attempt. Although this model was only tested on 
previously collected data, the finding that these 
retroactive predictions became more accurate closer 
to the attempt suggests that the model was able to 
capture the patients’ temporal evolution. Given the 
similar nature of datasets used to predict suicide or 
response to depression treatment, we might 
reasonably expect a 60-80% accuracy in predicting the 
most effective treatment using DL (see [40] for a 
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previous approach to this using another machine 
learning technique). This accuracy would represent a 
significant improvement over the one-third success 
rate reported in Step 1 of STAR*D [6]. For more 
complex or chronic cases, we might expect a lower 
success rate while still aiming to surpass STAR*D Step 
2 and 3 remission rates (25% and 12-20%, 
respectively) [6]. These are evidently rough predictions 
and will need to be continually revised. 
 
Feature Reduction 
      Given existing clinical psychiatry data, there are 
likely to be less training samples than typical machine 
learning datasets [6,10]. Model training might prove 
problematic if there are too many predictors. Manually 
inputting many predictors would be time-consuming 
and cumbersome for clinicians. However, many of the 
features in a patient’s file or a clinical trial are not 
actually expected to influence the response to anti-
depressants, making it possible to narrow down the 
number of features fed into the model. This feature 
reduction could be approached via several routes. One 
method would be to ask a panel of experts to review 
the features in the dataset and to select only the most 
important predictors. This list of predictors can be 
compared with the results of an exhaustive literature 
review. One can further decrease predictors by running 
many iterations of a model with certain input features 
omitted, to see which combination of predictors 
provides the most accurate results while being efficient 
enough with respect to time that clinicians will be able 
to incorporate it into their busy practices. 
 
Clinical Validation 
      Clinical validation is key to ensure the safety and 
efficacy of a predictive model in the clinical setting. A 
predictive model should be subject to rigorous testing, 
including: an open-label clinical trial to establish safety 
and effectiveness and a randomized control trial, to 
evaluate efficacy by comparing the predictive model to 
a usual practice control group and to a group using a 
model loaded with static, non-personalized 
suggestions derived from current clinical guidelines; for 
an example of these guidelines, see [7]. It is important 
to compare both the static model and the ‘practice as 
usual’ groups to the AI-powered model group in order 
to assess the effect of clinicians using guideline-
centered, measurement-based care, which, on its own 
may improve quality of care and patient outcomes.  
 
      Physicians are not familiar with using AI 
technologies in their practice. Building physician and 
patient trust will be critical to the success of any clinical 
decision tool. For this reason, physicians, as well as 

patient representatives, should be involved in the 
design of such a product. Considering that a clinical 
decision tool must be incorporated into the medical 
workflow, the ultimate utility of these applications will 
depend in large part on them being user-friendly. Use 
of companion patient self-report applications might 
also help to reduce the time spent by the clinician 
inputting patient information into the predictive model 
while providing rich data. Most importantly, however, a 
clinical decision tool should be conceptualized as a tool 
used to compliment or augment physician capabilities, 
and not as a means to supplant or replace clinical 
judgment. As such, it is critical that the clinician actively 
engage with the application. Active clinician and 
patient engagement, coupled with a seamless 
integration into clinician workflow, will bring clinical 
medicine into the age of big data and AI-augmented 
care. 
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