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INTRODUCTION

Sudden cardiac death is a leading cause of mortality in industrialized nations, accounting for 50% of all
cardiovascular deaths (1). Despite a decline in the past 20 years, sudden cardiac death accounts for 300,000
fatalities per year in the United States. Approximately 60% of these deaths occur in the absence of previously
diagnosed heart disease (1). Nevertheless, in most instances of sudden cardiac death, the underlying
pathophysiology of atherosclerotic cardiac disease with the superimposition of transient ischemic events
makes the heart more susceptible to the onset and maintenance of lethal arrhythmias (1). Approximately 50%
of post-myocardial infarction (MI) fatalities are sudden cardiac deaths resulting mostly from ventricular
tachycardia (VT) or ventricular fibrillation (VF). It is believed that these arrhythmias arise from mechanical
dysfunction and ischemic events interacting within a disordered electrophysiologic milieu (2). This has
prompted the active search for safe and effective treatment modalities and their ultimate evaluation in clinical
trials. Currently, beta blockers (class II agents) are recommended for post-MI patients with frequent
premature ventricular contractions (PVCs), whereas calcium antagonists (class IV agents) are not helpful, and
class I agents are actually harmful (2). The benefit of class III drugs, particularly amiodarone, is presently
being evaluated in large clinical trials. Therapeutic options for patients with sustained VT or VF occurring
late after MI include pharmacologic antiarrhythmic therapy, transcatheter or surgical ablative therapy (for
VT), and implantable cardioverter-defibrillators. Clinical trials have yet to determine which approach is most
effective and under which circumstances (2). Treatment modalities for patients with nonsustained VT post-
MI are also being evaluated in clinical trials. This review specifically discusses the mechanisms of action of
class I and class III antiarrhythmic agents as well as their potential untoward proarrhythmic effects.

CLASS I ANTIARRHYTHMIC AGENTS

The class I antiarrhythmic agents decrease automaticity in fast channel tissue by virtue of their Na+ channel
blocking property (which decreases the slope of phase 4 depolarization) The Class I drugs are furhter
subdivided into three subclasses based on different effects on action potential duration (APD) and maximum
velocity (Vmax); these effects result from varying potencies of Na+ and K+ channel block. (3). The class IA
drugs, which include quinidine, disopyramide, and procainamide, reduce Na+ channel availability by binding
to the Na+ channel in the open state (4), and reduce Vmax in both normal and diseased tissues. The class IA
drugs can also increase APD (5). This effect may be related to their potent K+ channel block during the
plateau (phase 2) (6), which may be more significant than the Na+ channel block, and therefore result in a



prolongation of the plateau phase. The class IB drugs, which include lidocaine, tocainide, and mexiletine, are
"pure" Na+ channel blockers which do not block K+ channels (2), and tend to decrease APD in the His-
Purkinje system and in ventricular muscle. This decrease in APD is more significant in portions of the His-
Purkinje system where the APD is normally longer (5). The class IB drugs, however, bind to the Na+ channel
largely in the inactivated (i.e., depolarized) state (4), and as a result, Vmax is selectively decreased in
automatic ventricular tissue or in diseased tissues where the equilibrium potential is less negative (e.g., after
myocardial infarction). The class IC drugs, which include flecainide, encainide, and propafenone, block Na+

channels in the open state (7) and also block K+ channels (8), like the IA drugs. The difference is that the IC
drugs block Na+ channels more potently than the IA drugs such that IC drugs are more potent at reducing
Vmax and in suppressing premature ventricular contractions. In addition, the class IC drugs cause a smaller
increase in APD in ventricular muscle than do the IA, and actually decrease APD in the His-Purkinje system
(5).

The use of class I drugs in antiarrhythmic therapy stems from their ability to decrease ventricular
automaticity and thereby reduce ectopic beats which may trigger reentrant tachycardias. The effect of class I
drugs in slowing conduction velocity in fast channel tissue has also been the basis for their use in the control
of the rate of existing reentrant tachycardias. Despite these therapeutic effects, it is now known that the class I
drugs also possess adverse effects which may outweigh the benefits of their antiarrhythmic effects. This point
was clearly demonstrated in 1989 by findings of the Cardiac Arrhythmia Suppression Trial (CAST) (9) which
revolutionized the use of antiarrhythmic drugs. CAST was designed to test the hypothesis that drugs with the
ability to suppress ventricular premature depolarizations could decrease mortality in patients with
asymptomatic or mildly symptomatic ventricular arrhythmias after myocardial infarction. However, the trial
was discontinued when it was determined that the use of encainide or flecainide (two class IC drugs) actually
increased the incidence of deaths from arrhythmias and non-fatal cardiac arrests (relative risk 3.6 with 95
percent confidence interval, 1.7 to 8.5) and also increased total mortality (relative risk 2.5 with 95 percent
confidence interval, 1.6 to 4.5) when compared to patients on placebo (9). Therefore, it would appear that
even though these drugs may be effective in suppressing an existing ventricular arrhythmia, they should not
be used prophylactically in post-MI patients. The explanation for this increased mortality is that by potently
slowing conduction, class IC drugs (and, to a lesser extent, the IA drugs) actually facilitate reentry and
therefore increase the incidence of reentry tachycardias (10). Moreover, it appears that the magnitude of this
proarrhythmic effect is directly related to the drugs' potency at slowing conduction (11).

CLASS III ANTIARRHYTHMIC AGENTS

As a result of the proarrhythmic effects of drugs which slow conduction velocity in ventricular tissue by
blocking open Na+ channels (i.e., Class IC and IA), a new emphasis has been made on searching for drugs
which increase APD without affecting conduction by selectively blocking K+ (and not Na+) channels in fast
channel tissue. Drugs with such properties are classified as class III antiarrhythmic agents, and are all
particularly effective in stopping the reentrant tachycardias in fast channel tissue. Reentry is stopped when
the refractory period of myocardial fibers in the reentrant circuit is prolonged to such an extent that the
propagating reentrant impulse no longer finds excitable myocardium but is blocked in refractory tissue (12).
Hence, unlike the Class IC and IA drugs, the class III drugs do not increase the likelihood of developing
reentrant tachyarrhythmias, but, on the contrary, make reentry more difficult. Nevertheless, we are now
finding out that the class III drugs can also be proarrhythmic in their own way; by prolonging APD they can
lead to a long QT syndrome where early afterdepolarizations (EADs) can trigger ventricular arrhythmias
known as torsades de pointes (49). The earlier class III drugs (like sotalol and amiodarone) have properties in
addition to increasing APD by blocking K+ channels, while the newer class III agents (like sematilide WAY-
123,398, dofetilide, E-4031, ibutilide, and RP 58866) are more specific for prolonging refractoriness by
selective K+ channel blocking activity. Furthermore, even among the new class III agents, differences may



exist in their selectivity for the different K+ channel types.

Early Class III Agents

Sotalol

Sotalol is a class III antiarrhythmic drug which, in addition to increasing APD by blocking K+ channels, also
competitively antagonizes beta adrenergic receptors. This antiadrenergic activity can depress slow channel
tissue by decreasing cAMP-dependent calcium entry. In doing so, these agents may prevent atrial premature
beats which can act as

trigger to initiate atrial fibrillation. Sotalol is also effective at restoring sinus rhythm in patients with chronic
atrial fibrillation (13), an effect largely due to its class III property of increasing atrial effective refractory
period (14). Sotalol's adverse cardiovascular effects, which include atrioventricular block, bradycardia,
hypotension, and exacerbation of heart failure, are mostly due to beta blockade (15). However, sotalol is a
racemic mixture of d- and l- isomers, and while l-sotalol has beta-blocking effects comparable to d,l-sotalol,
d-sotalol is practically devoid of beta blocking properties but remains a potent class III agent (16). Therefore,
d-sotalol shares the APD prolonging properties of the racemic mixture without causing hypotension and
bradycardia (17). D-sotalol has also been shown to decrease atrioventricular (AV) node automaticity by
prolonging AV node APD, and has proven effective in abolishing AV nodal reentrant tachycardias by
lengthening refractoriness in AV nodal cells (18). Sotalol has also been shown to significantly decrease the
recurrence of arrhythmias, sudden death, and total cardiovascular mortality, when compared to various class I
agents in the Electrophysiologic Versus Electrocardiographic Mortality (ESVEM) study (19). Sotalol's
relative effectiveness is presumably related to its ability to prevent ventricular arrhythmias by increasing
APD without the proarrhythmic effects of slowing conduction. However, since ESVEM did not use an
independent control analogous to placebo, sotalol's effects cannot be interpreted in absolute terms.
Nevertheless, as Fitton and Sorkin concluded in a review on sotalol published in 1993, it was believed that
sotalol was likely to prove particularly appropriate in the treatment and prophylaxis of life-threatening
ventricular tachyarrhythmias (20). More recently, the role of d-sotalol in managing cardiac arrhythmias has
been addressed in controlled clinical trials. However, the Survival With Oral D-sotalol (SWORD) double-
blind placebo-controlled trial in survivors of MI with depressed ventricular function was recently prematurely
terminated because of a strikingly greater all-cause mortality compared with placebo (4.6 vs. 2.6%) (21,22).
D-sotalol has also been shown to produce EADs and torsades de pointes in the rabbit heart (23,24). These
findings raise concerns regarding the current popular concept of using "pure" class III agents to control
arrhythmias; these drugs' QT-prolonging effect may increase mortality precipitating EAD-induced fatal
arrhythmias.

Amiodarone

Amiodarone is a unique class III drug; it possesses properties belonging to all four of the Singh and Vaughan
Williams classes of antiarrhythmic agents. Analogous to lidocaine's class I property, amiodarone interacts
selectively with the inactivated state of the Na+ channel (25) and therefore acts preferentially in ischemic
tissues. Amiodarone's Na+ channel block, which reduces Vmax and slows ventricular conduction in a use-
dependent fashion, is largely responsible for its ability to slow ventricular tachycardias to a more
hemodynamically-tolerated rate. Its high efficacy in suppressing premature ventricular complexes is believed
to be largely due to its class I actions (25). Like sotalol, amiodarone also has antiadrenergic (class II) activity
(26) which may contribute to its AV node suppressive actions. Amiodarone's Class III effects contribute to its
ability to prevent atrial or ventricular reentrant arrhythmias (25). Amiodarone, like sotalol, prolongs the atrial
effective refractory period (probably a class III property), and is more effective than sotalol in restoring and
maintaining sinus rhythm in patients with chronic atrial fibrillation (13,27). Amiodarone's calcium channel



blocking (class IV) properties contribute to its ability to prevent AV node reentrant arrhythmias and to slow
the ventricular response in atrial fibrillation. Furthermore, amiodarone's ability to block L-type calcium
channels, which mediate EADs, may explain its apparent lack of precipitation of EAD-induced arrhythmias
such as torsades de pointes, despite a prolonged QT interval (25). This fact, in addition to amiodarone's other
actions, may have contributed to its success in three recent studies of secondary prevention in post-
myocardial infarction patients - the Basel Antiarrhythmic Study of Infarct Survival (BASIS), the Polish
Amiodarone Study, and a pilot study in Canada - where amiodarone succeeded in decreasing mortality (28).
Amiodarone's favorable risk-to-benefit ratio is presently being examined in two large-scale clinical trials: the
Canadian Amiodarone Myocardial Infarction Arrhythmia Trial (CAMIAT) and the European Myocardial
Infarction Amiodarone Trial (EMIAT) (2). CAMIAT targets patients with frequent ventricular ectopic activity
(>10 PVC/hr) following MI, whereas EMIAT targets patients with poor LV function (left ventricular ejection
fraction < 41%) following MI (29).

New Class III Agents

Unlike sotalol and amiodarone, most of the new class III antiarrhythmic drugs mediate their effect via a
single mode of action; they selectively prolong APD. Some of these new drugs do so by specifically blocking
the delayed rectifier K+ current (IK). Sematilide and WAY-123,398, for example, are class III drug that
selectively prolongs APD by blocking IK (30,31). As will be discussed, other new class III agents selectively
block only the rapid activating component of the delayed rectifier current (IKr), while others act on other
channel types.

Dofetilide and E-4031

Dofetilide (UK-68,798) and E-4031 are two new potent methanesulfonanilide class III agents which
selectively inhibit the rapidly activating inward rectifying component of the net delayed rectifier K+ current
(IKr) (32,33). These agents do so without effects on the larger but more slowly activating component (IKs) or
on the inward rectifier K+ current (IK1) (34,35). Both dofetilide and E-4031 prolong APD in a "reverse" rate-
dependent manner (i.e., effects are greater at lower than at higher rates of stimulation). However, it was
shown that the sensitivity to the block of IKr by dofetilide and E-4031 is rate-independent. Interestingly, the
explanation for the reverse rate-dependence of APD prolongation results from the increase in magnitude of
IKs at rapid rates as a result of incomplete deactivation of IKs (34). Another experiment demonstrated that
isoproterenol (a beta adrenergic receptor agonist) increased the conductance of IKs channels without
affecting IKr channels, and therefore decreases the APD prolonging effects of E-4031 (36). Therefore, the
newly developed methanesulfonanilide drugs (dofetilide and E-4031) would be expected to have decreased
efficacy in the presence of high sympathetic tone, high heart rates, or both (30). In addition to prolonging
refractoriness, an experiment on dogs showed that methanesulfonanilide class III drugs may augment cardiac
contractility (37). Other experiments on ferret ventricular papillary muscle also demonstrated that dofetilide
and E-4031 increased contractility whereas d-sotalol had no effect on contractility (38).

Other New Agents

Ibutilide is a new class III drug which has been shown to be effective in converting sustained atrial fibrillation
to sinus rhythm (39). It has also been shown to be effective in the prevention of atrial flutter in a canine
model (40). Ibutilide's mode of action, however, differs from that of d-sotalol, sematilide, WAY-123,398,
dofetilide, and E-4031. Rather than blocking an outward K+ current, ibutilide prolongs APD largely through
the activation of a slow inward Na+ current (41) . In fact, at much higher concentrations, ibutilide actually
increases an outward K+ current (IK) (42). It was shown that a low concentration of ibutilide could prolong
the APD beyond that already prolonged by one of the other class III drugs (presumably by increasing a late
inward Na+ current), while a high concentration of ibutilide did the opposite (presumably by increasing an



outward K+ current) (42). This dose-related effect on APD may be expected to help reduce the likelihood of
torsades de pointes at high doses; however, most episodes of torsades are not dose related (43). Using a rabbit
model, ibutilide was compared to d-sotalol, E-4031, and dofetilide, and was found to have a significantly
lower incidence of EAD-induced torsades de pointes arrhythmias (ibutilide 12%, d-sotalol 70%, E-4031 56%,
dofetilide 69%, saline 0%) (44).

RP 58866 is another new class III drug with a unique mode of action; it acts by selectively blocking the
inward rectifier current (IK1) (33) without having any effect on the delayed rectifier current (IK) (30).

The new agents NE-10064 (azimilide) and NE-10133 are reported to be potent at inhibiting the slowly
activating potassium current (IKs) in guinea pig cardiac myocytes (45). Recently, however, NE-10064 was
shown to block IKr more selectively than IKs, and to also block the L-type calcium current in a use-
dependent manner in guinea pig myocytes (46).

BRL-32872 is new class III agent reported to inhibit the rapidly activating component of the delayed rectifier
potassium current and the L-type calcium current (believed to be responsible for causing EADs) in the guinea
pig heart (47). BRL-32872 was also shown to lack a reverse frequency-dependent effect on APD, to rarely
produce EADs, and to antagonize EADs produced by E-4031 (47). In another study using a minipig model,
BRL-32872 demonstrated an antifibrillatory effect associated with prolonged ventricular repolarization and
showed enhanced efficacy over dofetilide on reperfusion arrhythmias, presumably due to its calcium channel
blocking property (48).

CONCLUSION

In summary, current class I antiarrhythmic agents are not suitable for prophylactic use because they promote
reentrant tachycardias by slowing conduction velocity. Current class III drugs do not slow conduction
velocity, but are nevertheless proarrhythmic. Their QT interval lengthening effect leads to EADs which cause
arrhythmias such as torsades de pointes. Furthermore, some of the newest class III agents like dofetilide and
E-4031 have the problem of reverse use dependence; APD is maximally increased at normal heart rates
(increasing the risk of EAD-induced tachycardias), but during a tachycardia their desired effect declines. In
fact, many of the newer selective IKr blockers have been shown to produce torsades de pointes arrhythmias
in clinical trials (49). An ideal class III antiarrhythmic agent, rather than having reverse use dependent APD
prolongation, should have little effect during normal sinus heart rates but steeply increase APD as the heart
rate accelerates when tachycardia or fibrillation strikes. There seems to be two feasible ways to accomplish
this. A first possibility is to develop a class III drug which increases APD by activating an inward Na+ current
as the cell depolarizes. In order to make such a drug rate-dependent (i.e., to increase APD proportionately to
increases in heart rate), the drug would need to bind to its receptor during the upstroke of the action potential,
slowly dissociate from the receptor during the plateau phase, and rapidly dissociate during the diastolic
phase. Thus, as the heart rate increases, APD increases proportionately because of both a greater occupancy
of the activator receptor (because of binding during the upstrokes which are increased as the heart rate
increases) and a decreased dissociation from the activator receptor (because of slow dissociation during the
plateaus which are increased, and fast dissociation during the diastolic intervals which are shortened as the
heart rate increases) (50). The second possibility is to develop a rate-dependent class III antiarrhythmic drug
that increases APD by blocking outward K+ channels (50). The most promising target appears to be the
slowly activating component of the delayed rectifier current (IKs). This current, as a result of incomplete
deactivation of the channels, significantly increases in magnitude at rapid rates and accounts for the reverse
rate dependence of selective IKr blockers (34). A selective blocker of IKs might therefore be a class III agent
which is particularly effective at increased heart rates. Further research on these types of drugs may lead to
the development of a rate-dependent class III antiarrhythmic agent which could effectively prevent
arrhythmias and decrease mortality in treated patients.
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