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INTRODUCTION

Glaucoma, the most prevalent disease facing ophthalmologists today, is a collection of disorders
characterized by progressive loss of visual fields due to optic nerve damage and, in most cases, elevation of
intraocular pressure (IOP). They are the leading cause of blindness in the United States, affecting 1-2% of
individuals aged 60 and over. Because the progressive vision loss tends to be painless, patients often present
with advanced disease (1). Early detection depends on routine eye examinations with IOP measurements
(using tonometry), attention to the appearance of the optic disc, and visual field testing.

Classification of the glaucomas has important implications for treatment and prognosis. Whereas primary
glaucoma is unrelated to other ocular disease, secondary glaucoma occurs as a consequence of other ocular
abnormalities or pathology. Glaucomas are also identified by anterior chamber tissue alterations (for example,
congenital neovascular glaucoma), by accumulation of abnormal substances (including macrophages,
degraded lens protein, tumor cells, altered blood cells, and melanin pigment) in the anterior chamber angle,
and by the anatomical configuration of the anterior chamber angle (open- or closed-angle glaucoma) (2). If
greater than 20 degrees, the anterior chamber angle--the angle formed by the anterior surface of the iris, the
face of the ciliary body, the internal surface of the trabecular meshwork, and the posterior surface of the
cornea--is, by definition, open. Closed-angle glaucoma occurs as a result of increased pupillary resistance to
aqueous humor outflow, and may be acute (with increased IOP) or chronic (with normal IOP) (3).

Accounting for 75% of all glaucomas, primary open-angle glaucoma (POAG) is the most common type. In
POAG, the anterior chamber angle is open, permitting free access of aqueous humor to the structures in the
angle responsible for fluid drainage. It typically presents as asymptomatic, progressive loss of peripheral and
paracentral visual fields leading to blindness if untreated. Risk factors include advanced age, male gender,
black race, high IOP, family history of open-angle glaucoma, myopia, stress, adult-onset diabetes mellitus,
thyroid disorders, and chronic systemic disease (4,5). Decreased lean body mass and history of cataracts have
a weaker association (6), and studies on the role of vascular factors remain contradictory (7), although an
increased prevalence of vasospastic disorders and systemic orthostatic hypotension among glaucoma patients
has been shown (8-11).



The pathogenesis of POAG has not yet been elucidated. Advances at the molecular level have not thus far
translated into a clear understanding of ocular receptors and the mechanism by which anti-glaucoma drugs,
such as ß-blockers, inhibit aqueous humor formation. Similarly, current animal models do not provide
adequate simulations of human glaucoma: ethacrynic acid has been shown to increase outflow of aqueous
humor in monkeys but has failed in human trials (12). Ongoing development of new drug classes, refinement
of older drug classes, changing theories of pathogenesis, improvement in laser and surgical procedures (13-
15), and increasing knowledge and concern about side effects and patient compliance necessitate the constant
re-evaluation of current and potential pharmacologic treatment of POAG.

AQUEOUS HUMOR PRODUCTION AND DRAINAGE

Aqueous humor is a clear fluid high in ascorbic acid and low in protein that is continually produced by the
ciliary processes of the non-pigmented epithelium of the ciliary body at a rate of approximately 2.5 µL/min.
It is responsible for maintaining the normal pressure and volume of the eye and providing nutrition to
avascular eye tissue, including the lens, cornea, and vitreous body. The production of aqueous humor depends
on three physiologic processes: diffusion, ultrafiltration, and secretion. Diffusion involves the movement of
substances across cell membranes along local transmembrane concentration gradients. Ultrafiltration depends
on the osmotic and hydrostatic pressure differences between the plasma in the capillaries of the ciliary
processes and the aqueous humor in the posterior chamber. Secretion occurs by transepithelial fluid
movement linked to Na+, K+-ATPase and carbonic anhydrase enzymes in the non-pigmented ciliary
epithelium. Varying with the diurnal cycle of epinephrine release from the adrenal glands, secretion is highest
during the day and lowest at night (3,16).

Once produced by the ciliary body, the aqueous humor travels from the posterior chamber of the eye into the
anterior chamber via the pupil. The first point of resistance to outflow occurs at the pupil by contact of the iris
with the anterior surface of the lens. The second and major site of resistance lies between the anterior
chamber and the venous circulation in the draining structures of the anterior angle. Approximately 85% of the
fluid passes through the corneoscleral trabecular meshwork into Schlemm's canal and drains into the
episcleral aqueous veins. The remaining 15% passes through the uveoscleral vascular system which then
communicates with the systemic venous circulation (17).

The aqueous fluid flows from the trabecular meshwork into Schlemm's canal, a large, endothelium-lined
drainage vessel, and enters the venous circulation via 25-35 collector channels. The trabecular meshwork,
composed of lamellated sheets bordering Schlemm's canal, may be divided into two parts. The most anterior,
non-filtering portion has no contact with Schlemm's canal. The filtering portion, which covers the inner wall
of Schlemm's canal, consists of three layers (from outward to inward): the cribiform layer, the corneoscleral
meshwork, and the uveoscleral meshwork. The cribiform layer consists of layers of elongated, fibroblast-like
cells embedded in a homogeneous extracellular material. The acellular spaces seen by electron microscopy
may represent channels for the flow of aqueous fluid toward Schlemm's canal. The corneoscleral meshwork,
the main layer of the trabecular meshwork, is composed of flat, interlacing beams, each of which contains a
central core of collagen, ground substance, and elastic fibers lined by endothelium and supported by a
basement membrane. The uveoscleral meshwork consists of similarly composed but irregularly arranged
strands covered by a layer of endothelial cells.

The cells of the trabecular meshwork have several functions. They produce glycosaminoglycans (GAGs),
extracellular glycoproteins, and fibrillar material. They are also highly phagocytic, capable of removing
particles, pigment granules, cellular debris, red blood cells, iron, and bacteria from the aqueous humor,
thereby preventing obstruction of outflow drainage. In certain cases of secondary open-angle glaucoma, this
phagocytic function is overwhelmed, leading to blockage of the trabecular meshwork.

A number of factors play a role in the normal eye's resistance to outflow at the anterior chamber angle (17).



Changes in IOP produce changes in the arrangement of trabecular fibers, such that the balance between
inflow and outflow of aqueous humor remains constant. The ciliary muscle also affects the arrangement of the
trabecular meshwork by virtue of its anatomical attachment to the scleral spur: contraction alters the
orientation of the meshwork to produce an increased corneoscleral, and perhaps also uveoscleral, outflow.
Studies have shown that increasing hyalinization of trabecular columns with age leads to increased resistance
to outflow, but does not lead to pathologically high IOP levels due to the concomitant, age-related decrease in
aqueous humor secretion (18). Approximately 1/3 of the population have been shown to exhibit a significant
increase in IOP after topical or systemic administration of corticosteroids, 3% of whom develop "cortisone
glaucoma". Although the pathogenesis of this condition is not clear, it has been suggested that corticosteroids
may affect the polymerization of acid mucopolysaccharides within the trabecular meshwork. Neurogenic
regulation of IOP via the rich plexus of nerve fibers and endings within the meshwork has also been
postulated to affect IOP and seems to be supported by microelectrode studies of cat hypothalami (17). Any
increase in episcleral venous pressure can lead to increased IOP secondary to decreased aqueous drainage,
and is, in fact, the cause of one type of secondary open-angle glaucoma.

THEORIES OF PATHOGENESIS

The defect responsible for increased resistance to aqueous humor outflow in POAG is less straightforward
and less discernible than that in secondary glaucoma. In fact, the actual location of the postulated defect
remains controversial. Although hypersecretion of aqueous humor has been reported in exceptional cases, it
is generally not believed to be a factor in the pathogenesis of POAG. It is almost certain that the major part of
outflow resistance is not located beyond Schlemm's canal. Some have postulated the defect to be a decrease
in vacuolization of inner wall endothelium in Schlemm's canal (which would reduce the ability of Schlemm's
canal to collect drainage fluid), but studies have failed to show any difference between normal and affected
eyes. Furthermore, there is no consensus as to whether the collapse of Schlemm's canal occasionally seen in
sections is the primary cause of resistance to outflow or is a secondary effect. Studies of trabeculoplasty
specimens showing an abnormal accumulation of protein in Schlemm's canal are of questionable value due to
the potential for protein leakage and damage during surgery (2,3,19).

Most data suggest that the pathogenesis of POAG is related to a defect in the trabecular meshwork. There is a
loss of the inner meshwork trabecular cells, thought to occur due to chronic phagocytic demand on the cells.
Sheath-derived (SD) plaques, originating from the sheath of elastic-like fiber beneath the endothelial lining of
Schlemm's canal, have been shown to be more abundant in the cribiform layer of glaucomatous eyes than in
the eyes of normal age-matched controls. Some studies indicate that there may be an abnormal hyalinization
of the trabecular meshwork beams. In both cases, a subtle narrowing of collector channels might lead to a
large increase in outflow resistance, leading to pathologically increased IOP in some glaucomatous eyes
(2,3,19).

There has been a long-standing belief that the mechanism of damage in glaucomatous eyes is related to IOP.
Indeed, the persistence of this belief is reflected in the current treatment available, which aims to reduce IOP
to somewhat arbitrary target pressures (1). Although there is no evidence to suggest that increased IOP causes
the loss of ganglion cells and nerve fiber substance in the retina directly, there is a very strong association
between glaucoma and IOP above the normal range of 10-22 mm Hg. It has been shown that the higher the
IOP, the greater the probability of developing glaucoma: 42% of patients with IOP > 30 mm Hg develop
glaucoma within 5 years (20). Subjects with pressures ranging from 16-19 mm Hg are at 1.7 times the risk of
patients with lower pressures for developing glaucomatous change, and the risk increases 10.5-fold when the
pressure exceeds 24 mm Hg (21). Primate eyes exposed to increased IOP for extended periods exhibit
neuropathy that is clinically and histologically indistinguishable from human POAG. In addition, the eye with
higher IOP in patients with normal-tension glaucoma always exhibits greater visual field loss. However, there
is no critical target pressure beyond which IOP can be reduced to prevent further progressive degeneration of
the optic disk and nerve bundle damage.



Current research appears to indicate that the damaging effect of IOP occurs at the level of the lamina cribrosa.
This structure consists of ten lamellar sheets, the aligned pores of which form channels for optic nerve
bundles containing the axons of retinal ganglion cells. The lamina cribrosa provides structural support for the
axons and contains the vascular supply for that part of the optic nerve. In vitro studies have shown that high
pressure can distort or collapse the lamina cribrosa, which could lead to retinal ganglion cell axon damage. In
fact, the regions of the lamina cribrosa with thicker septae (and thus possibly greater resistance to the effects
of mechanical deformation) have been shown to correspond to retinal nerve fibers supplying portions of the
visual field relatively spared from damage. From a theoretical point of view, this concept may explain why
patients with axial myopia (higher axial length than emmetropic eyes) have been shown to be at a higher risk
for glaucoma. By Laplace's equation, the larger radius leads to an elevated wall stress with an increase in the
potentially detrimental force on the optic nerve. Other studies have shown that experimentally-induced
glaucoma causes displacement of the optic nerve head, which may cause disturbances in axonal transport.
Changes in the extracellular matrix may also be associated with increased IOP, potentially resulting as well in
altered delivery of nutrients to axons. It would seem, therefore, that individual variations in the lamina
cribrosa may be related to patients' susceptibility to the effects of increased IOP (22-24).

This collection of evidence supporting a pressure-related mechanism of damage does not explain why some
patients with "normal" IOP develop damage, while others with ocular hypertension do not. Studies showing
an increased prevalence of diabetes mellitus, hypertension, and migraines in glaucoma patients--diseases with
well-known microvascular or angiogenic abnormalities--have lent support to the concept that both vasogenic
and pressure-related mechanisms may be involved in optic nerve damage. The current hypothesis is that
vascular dysregulation may lead to a temporary or permanent decrease in optic nerve head perfusion, which
may contribute to the development of glaucomatous damage in some patients. Unfortunately, researchers do
not currently have the ability to quantify ocular perfusion in the optic nerve head with sufficient accuracy to
yield reliable results in clinical trials. While studies with fluorescein angiography only depict the superficial
layer of blood vessels arising from the retina, laser Doppler velocimetry has shown some promise (22-24).

PHARMACOLOGIC TREATMENT

The therapy for glaucoma patients is highly individualized, but typically begins with the use of topical agents,
usually ß-blockers. If the pressure reduction is not sufficient, systemic carbonic anhydrase inhibitors are used
to decrease aqueous humor production, followed by laser trabeculoplasty and filtration surgery if medical
therapy fails. Cases of severe glaucoma (defined as an IOP of greater than
30 mm Hg) should be treated immediately on presentation with trabeculoplasty (25).

The chronic asymptomatic nature of POAG presents the physician with a significant problem of patient non-
compliance. In the face of the complexity of therapeutic regimens, the chronic use of multiple medications,
the need for frequent daily administration, the lack of noticeable beneficial effect, the presence of side effects,
and financial cost, patients often do not take their medication consistently. One study using a pilocarpine
eyedrop monitor demonstrated that subjects took a mean of 76% of their eyedrops, but reported taking 97%
(3). Patients often take their medication as prescribed on the day of a visit to the doctor, but when asked,
admit to not taking their medication on a regular basis. Ability to administer eyedrops and understanding of
the disease and treatment are important factors. In one study, 13% of patients experienced in the use of
topical eyedrops were unable to instill topical medications into both eyes successfully even after several
attempts (26).

To ensure compliance, counselling and education regarding the disease process and its therapy are vital. A
physician or nurse should watch the patient instill drops and demonstrate how to apply pressure over the
lower puncta and canaliculi in order to minimize systemic side effects (16). The drug regimen should be
integrated into the patient's daily routine. In some cases, switching the currently used drug for a "new" drug
of the same class with similar effects has been shown to improve compliance (27). Bottles recording drop



administration can help physicians to monitor compliance, and patients to remember to take their
medications; card charts with an eyedrop administration schedule can aid patients with complex regimens
(16). Insufficient physician attention to patient compliance often leads to progressive optic nerve damage and
visual field loss and a need for laser therapy or filtering surgery; unfortunately, physicians often make the
erroneous assumption that failure of medical therapy is a result of low drug effectiveness.

The need for personalization of glaucoma therapy cannot be overemphasized. Choice of an appropriate
pharmacologic agent must take into account coexistent medical conditions and risk factors in order to avoid
the development of adverse ocular or systemic side effects, which can produce significant complications and
decrease compliance. As the underlying pathogenetic defect is not yet fully understood, there is no therapy
available to reverse POAG. It is, therefore, important to recall that success of glaucoma therapy is not judged
by the degree of IOP reduction alone, since there is wide individual variation in the range of pressures
necessary to produce glaucomatous damage. Thus, measurements of IOP provide no indication of drug
efficacy without frequent examination of the optic nerve head and visual fields, careful evaluation of the
presence and severity of side effects, and assessment of patient compliance.

ß-Blockers

ß-adrenergic antagonists, which were serendipitously found to reduce IOP over 25 years ago during the use of
propranolol to reduce systemic hypertension, are the initial therapy of choice in POAG (28). Timolol, a non-
specific ß-blocker, quickly became the gold standard for medical therapy of glaucoma, particularly POAG.
There are presently five ß-blockers in use (timolol, betaxolol, levobunolol, carteolol, and metipranolol), all of
which decrease IOP by reducing aqueous humor production via a predominantly ß2-adrenergic receptor
mechanism in the ciliary epithelium. By antagonizing epinephrine, timolol blocks potential increases in
aqueous humor production. As would be expected, application of ß-blockers at night has very little effect on
aqueous humor production, since circulating epinephrine levels are already low. Morphologic changes in the
non-pigmented ciliary epithelium have also been observed following timolol administration, suggesting the
cessation of cellular pumping action (29).

The typical half-life of ß-blockers following oral administration ranges from 3-12 hours. Topical ß-blockers,
on the other hand, have been shown to be effective for 12-24 hours due to significant binding to melanin
pigment in the eye; this is one reason for the greater challenge that glaucoma control represents in patients
with heavily pigmented eyes. Once therapy is stopped, the ocular hypotensive effect of ß-blockers persists for
several weeks, much longer than would be expected from the half-life. It is thought that this persistence of
effect may be caused by down-regulation of adrenergic receptors in the ciliary epithelium.

The main differences among the ß-blockers lie in their local tolerability and their production of systemic side
effects. Indeed, ß-blockers are favored over other drug classes largely due to their extended duration of action
and low level of ocular side effects. In terms of systemic effects, the distinction between selectivity and non-
selectivity is crucial, because up to 80% of a topically administered drug can enter the general circulation by
drainage via the nasolacrimal duct and absorption by the nasal mucosa, at concentrations sufficiently high to
produce side effects. The non-selective ß-blockers (timolol, levobunalol, and metipranalol) can produce
suppression of heart rate and myocardial contractility during exercise and cause alterations in cardiac rate and
rhythm, such as sinus bradycardia. They can also have a negative effect on lipid metabolism, producing an
elevation in serum triglycerides and a decreased high-density lipoprotein level. One study estimates that their
negative effect on the lipid profile potentially constitutes a 17% increased risk of myocardial infarction.
Central nervous system effects, such as depression, altered mental states, and impotence, have also been
reported with the use of ocular ß-blockers, and it has been suggested that the single greatest risk factor for
falls in elderly patients with glaucoma is the use of topical ß-blockers (30,31).

The side effect of non-specific ß-blockers that has generated the most concern, particularly with timolol,



involves respiratory function. Non-selective ß-blockers are contraindicated in patients with bronchospastic
disease. Pulmonary function tests have been shown to worsen after the administration of a single drop of
timolol in patients with asthma, chronic obstructive pulmonary disease, and chronic bronchitis (32). This
exacerbation of underlying pulmonary disease is especially important when one considers the high
prevalence of both glaucoma and airway diseases in the elderly. A recent study in Britain indicates that the
seriousness of this complication may be dangerously underestimated, as more than 25% of the study
population had undiagnosed obstructive airway disease as revealed by improved respiratory function on
change of therapy (33). Although timolol's mode of application and poor lipid solubility produce cerebral and
systemic concentrations that are low in comparison to systemic ß-blockers such as propranolol, other side
effects continue to generate concern. Timolol may mask diabetes mellitus and contribute to the polypharmacy
of old age, enhancing the potential for serious drug interactions. It is also possible that central nervous system
effects--including disorientation, hallucinations, depression, fatigue, anxiety, emotional lability, and memory
impairment--have been underreported and attributed instead to systemic or cerebrovascular disease. Timolol
also consistently reduces heart rate and, like other non-specific ß-blockers, worsens congestive heart failure.
Other reported side effects include syncope, bradyarrythmias, heart block, fibrillation, and myocardial
infarction, as well as impotence, rashes, diarrhea, male-pattern baldness, and reduction of high-density
lipoproteins (28).

Levobunolol and metipranolol are the two other principal non-selective ß-blockers. Levobunolol has a very
potent effect on IOP, but shares timolol's effect on systemic ß-adrenergic receptors. It has slightly more ocular
side effects than timolol and should be avoided in patients with cardiovascular or respiratory problems. Its
metabolite dihydrolevobunolol is active and has a half-life of 7 hours, making levobunolol useful for once-
daily therapy, like timolol. Although clinical experience with metipranolol is limited, it has an
oculohypotensive effect comparable to that of timolol and levobunolol, without cardiac or pulmonary side
effects other than a slightly decreased pulse (1).

The presence of side effects has inspired the search for better ß-blockers. Carteolol, for example, has partial
agonist activity; this intrinsic sympathomimetic activity (ISA) is thought to cause fewer alterations in lipid
profile and heart rate, an important consideration in patients with high blood pressure. The ISA of carteolol
may also improve retinal blood flow. Its effect on IOP is similar to that of timolol, and its active metabolite 8-
hydroxy-carteolol has a half-life 2-3 times that of carteolol, which may increase bioavailability and duration
of action. Of all the ocular ß-blockers, certeolol is probably the most well-tolerated, although its long-term
effects remain to be studied (28,34).

Betaxolol, the only ß1-selective blocker, has shown, after seven years of use, no apparent systemic side
effects. There have been no changes in pulmonary function observed in patients with chronic obstructive
pulmonary disease, asthma, and chronic bronchitis. Betaxolol is similar in ocular hypotensive effect to
timolol, although some studies have shown it to be slightly less effective (28). Some authors recommend the
use of betaxolol over timolol due to the absence of side effects and to the fact that a statistically significant
difference in IOP induced by a drug may not produce clinically significant effects. However, it has been
suggested that the large number of reported side effects of timolol may only reflect the long history of the use
of timolol as compared to other IOP-lowering drugs. Long-term studies of betaxolol are crucial, as drugs can
produce delayed effects and allergic responses when taken chronically on a daily basis.

The choice of ß-blockers depends on a personalized assessment of potential adverse systemic effects, since
each of the ß-blockers is essentially equally effective. Although IOP-lowering effect is not a measure of drug
efficacy on its own, numerous studies continue to compare ocular hypotensive effects, using timolol as the
gold standard. With the advent of new drug classes
and drug delivery methods, as well as advances in laser and filtration surgery, the use of timolol and other ß-
blockers is being challenged.



Parasympathomimetics (Miotics)

Exemplified by pilocarpine, these drugs act by mimicking the action of acetylcholine on the iris sphincter and
ciliary muscle. The contraction induced by pilocarpine produces a decreased outflow resistance in the
trabecular meshwork and, hence, a decreased IOP. Pilocarpine, which is available as eye drops, as an
ointment, and as an ocular insert similar to a contact lens, covers the range of current ocular drug delivery
methods. An unavoidable side effect of para- sympathomimetics is a decrease in the amount of light entering
the eye; they are therefore contraindicated in patients with cataracts, whose vision is already compromised.
Vision may become blurry intermittently throughout the day, especially in younger patients, and headaches
for the first few days after onset of treatment are common. Stronger miotics have a greater effect on IOP but
are also occasionally associated with side effects, such as diaphoresis, nausea, and stomach cramps. There is
also a possibility of cataract formation and retinal detachment (35).

Adrenergic Agonists

Topical adrenergic agonists, such as epinephrine and dipivefrine, function by facilitating uveoscleral and
trabecular outflow. These drugs commonly cause stinging, tearing, and burning when first placed on the eye,
leaving the eye bloodshot for several hours after application. Furthermore, they can produce allergic reactions
and should be used with caution in patients with high blood pressure, irregular heart beats, and rapid pulses,
or in patients who are aphakic or pseudophakic (31). *2-adrenergic agonists, like apraclonidine, cause a short-
term reduction in IOP, mainly by decreasing aqueous humor production. They have also been postulated to
affect uveoscleral outflow. Side effects include conjunctival blanching, minimal mydriasis, and eyelid
retraction. Their long-term effects are still under investigation (36).

Carbonic Anhydrase Inhibitors

Although they have an extremely beneficial effect on IOP, oral systemic carbonic anhydrase inhibitors, such
as acetazolamide, have severe systemic side effects and therefore have been used only after all other medical
options have been exhausted. The carbonic anhydrase inhibitors act by inhibiting HCO3

- movement into the
posterior chamber and hence that of Na+ and H20, with resultant inhibition of aqueous humor formation. It is
interesting to note that cardiac glycosides have been shown to inhibit aqueous humor production in a similar
manner by inhibiting Na+, K+-ATPase, but are not used clinically due to ocular toxicity (16). Side effects are
severe for several reasons: inhibition of at least 99% of carbonic anhydrase activity must occur before
aqueous humor production is significantly depressed; carbonic anhydrase is present in virtually every tissue;
and high protein binding (95%) necessitates large doses. Patient non-compliance is approximately 50%
because of the severity of side effects (33): tingling in the hands and feet, poor appetite and sense of taste,
stomach upset, diarrhea, fatigue, decreased libido, and depression. Rarer effects include kidney stones,
thrombocytopenia, aplastic anemia, and agranulocytosis. The large variation in plasma levels after the same
dose is given in different individuals makes it difficult to optimize dosages and minimize side effects.
Carbonic anhydrase inhibitors should be avoided in patients with allergies to sulfa drugs (11).

In the past, topical carbonic anhydrase inhibitors were unable to reduce IOP significantly due to poor corneal
penetration. However, because of the potential for greatly reduced side effects, research persisted for over
twenty years and finally yielded the new topical carbonic anhydrase inhibitor, dorzolamide (MK-507). One
year of clinical testing has shown reductions in IOP of up to 26.2% and no significant side effects following
3-times daily therapy with a 2% preparation (29). Relatively few minor ocular side effects, including transient
stinging, burning, and tearing, have been reported.

NEW DIRECTIONS



New avenues of research may affect future pharmacologic therapy. Very little attention has been paid to the
possibility that some drugs used to reduce IOP may have deleterious effects on visual function. For instance,
it has been found that ß-adrenergic blockers, the first-line therapy for glaucoma, reduce ocular blood flow in
experimental animals, with potentially negative effects on the optic nerve. From a physiologic standpoint,
decreasing the flow of aqueous humor is not an ideal approach for glaucoma therapy when one considers that
this flow is essential for nutrition of avascular ocular tissues (37,38). Although clinically-evident short-term
damage in these tissues has not been shown, there is a reduction in the safety margin of nutritional supply
levels. In addition, the reduction of aqueous humor flow through the vitreous body to the posterior chamber
may limit diffusion and removal of eye solutes, whose accumulations may be toxic to the ganglion cell axons.
The use of parasympathomimetics is also suboptimal since their induction of ciliary muscle contraction not
only increases corneoscleral outflow but simultaneously reduces uveoscleral outflow (31).

The ubiquity of carbonic anhydrase throughout the body not only contributes to systemic effects of inhibition
but may also result in deleterious effects on ocular tissues. Carbonic anhydrase activity in the retina and
choroid, including superficial retinal vessels, may produce a direct adverse effect. The problems associated
with carbonic anhydrase inhibitors illustrate the basic pharmacologic principle that antagonists, which rarely
participate in normal physiological control mechanisms and tend to evolve as toxins in nature (e.g., curare
and atropine), tend to produce more side effects than agonists, which function by augmenting normal
processes. Furthermore, antagonists require high effector cell concentrations for activity. Carbonic anhydrase
is crucial for the maintenance of normal corneal hydration and transparency, and thus its inhibition may
render the tissue more vulnerable to stresses.

The finding that the susceptibility to optic nerve damage in glaucoma may be related to mechanical, vascular,
and other factors has created the potential for future reorientation of pharmacologic and surgical glaucoma
therapy. Research has already shown that dopamine antagonists may be used to reduce IOP and, as an
independent effect, to increase ocular pulsatile blood flow (39,40). Recent investigations with Ca2+-channel
blockers have also shown an improvement in visual fields and reduction in progressive optic nerve damage in
low-tension glaucoma patients, presumably due to an improvement of ocular circulation (41,42).

Epidemiological studies have shown evidence of a bimodal population distribution of POAG in which the
first group exhibited a vasospastic response in their fingers to cold, whereas the second had risk factors for
arterial disease with disturbed coagulation and biochemical measurements. High- and low-tension glaucoma
cases were shown to be equally distributed between the two groups (43). Thus, future elucidation of the
mechanisms of optic nerve damage will likely support the current belief that ocular hypertensive therapy
alone will only benefit a select group of glaucoma patients. For this reason, research into factors that can
provide protection to the optic nerve is currently underway. Growth factors showing promise include nerve
growth factor (NGF), which is involved in nerve regeneration by stimulating outgrowth of neurites, and
fibroblast growth factor (FGF), which may increase retinal ganglion cell survival (31). Another
new drug currently being studied is the prostaglandin F2* analog, latanoprost. This drug exerts its effect by
enhancing uveoscleral outflow and produces a marked reduction in IOP. In clinical trials of once-daily
therapy used concomitantly with timolol for up to 12 weeks, no clinically significant side effects were
observed during treatment (44).

New approaches to the design of safer ophthalmic drugs aim to limit effects to the desired site of action.
Currently under investigation is the enzymatic activation of pro-drugs by enzymes preferentially or
exclusively found at the site of action, the ciliary body. Similarly, the so-called "soft drug" approach involves
several strategies, the most effective of which has been the modification of an active metabolite to produce a
drug pharmacodynamically identical to the original drug but easily inactivated by a single-step reaction
occurring virtually everywhere in the body (usually hydrolysis). Thus, the desired effect is produced
exclusively at or near the site of administration (45).



Clearly, the practicing ophthalmologist has a wide variety of medications with which to treat patients
suffering from POAG. Assessment of pharmacologic therapy should involve not only measurements of IOP
but also attention to the optic disc, visual fields, side effects, and compliance. With the advent of new drug
classes and the discovery that alternate mechanisms may be involved in the pathogenesis of glaucoma,
medical treatment--along with laser therapy and filtering surgery--will no doubt continue to provide new and
exciting options for the management of POAG.
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