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INTRODUCTION

Compounds that enhance the acquisition and retrieval of information, known broadly as nootropics, have
long been sought. The development of nootropics has obvious clinical importance for the treatment of
cognitive dysfunction associated with aging and pathological conditions such as Alzheimer's disease.
Following the discovery of the N-methyl-D-aspartate (NMDA) glutamate receptor and its possible role in
learning and memory, compounds acting at this receptor complex have been investigated for cognition-
enhancing activity. One such compound is D-cycloserine (DCS), a broad-spectrum antibiotic currently
administered at doses of 0.5 to 1.0 grams per day for the treatment of Mycobacterium tuberculosis infections
(1,2), which has been found to interact with the NMDA receptor complex (3).

This review will focus on the actions of DCS as mediated by the NMDA receptor complex, with emphasis
placed upon the compound's possible nootropic activity. Following a brief discussion of the NMDA receptor,
the interactions of DCS with this receptor will be presented, and studies investigating the use of DCS as a
possible treatment for cognitive disorders will be reviewed.

THE NMDA RECEPTOR COMPLEX

The NMDA receptor complex is a voltage-dependent, ligand-gated ion channel with a high degree of calcium
permeability, which has been postulated to exist as an heteromeric pentamer with a central ion-conducting
pore (4-6). Even before this complex was discovered, its importance in learning and memory had been
illustrated through a decrease in the severity of mental retardation in patients to whom glutamic acid was
administered (7), and through a demonstrable increase in maze learning in rats with the use of NMDA
agonists (8). After the discovery of long-term potentiation (LTP) (9)--a long-lasting increase in synaptic
efficacy inducible in some areas of the CNS following tetanic stimulation, and a possible molecular
mechanism in the biochemical cascade that leads to the formation of memories--it was demonstrated that the
NMDA receptor complex was required for the induction of LTP in certain brain regions (10-13). Using a
variety of techniques, including blockade with NMDA antagonists, investigators discovered that the
activation of the NMDA receptor complex appeared to be involved in certain forms of learning and memory
(14-17).



Glutamate is an endogenous ligand for the NMDA receptor complex (18); however, it is now clear that
glycine also interacts with this receptor. The co-administration of 3 uM glycine and 300 xM NMDA to
Xenopus oocytes expressing the NMDA receptor elicits an increase in the maximum inward current over that
seen with NMDA alone (19). Furthermore, the co-administration of these two compounds at similar
concentrations to Xenopus oocytes expressing the NMDA receptor or to hippocampal neurons in vitro
decreases the amount of apparent NMDA receptor desensitization that occurs with glutamate alone (19-21).
In addition, NMDA has been found to increase the release of norepinephrine from rat hippocampal
synaptosomes, which represent dissociated nerve terminals, and this release is enhanced by glycine and DCS,
a glycine partial agonist (22). Using [*H] strychnine, a radiolabeled glycine antagonist, and [*H] glycine, it
was demonstrated that two separate glycine-binding sites exist within the CNS: strychnine-sensitive (SS)
sites, which have the highest density in the medulla, pons, and spinal cord; and strychnine-insensitive (SI)
sites, which are found mainly within the cerebral cortex and cerebellum (23). The SS sites represent the
glycine-coupled chloride ion channel, while the SI sites correlate with the glycine binding site associated with
the NMDA receptor complex. This finding, coupled with the discovery of the NMDA receptor-associated
glycine binding site (24), suggested that glycine may influence the activity of glutamate at the NMDA
receptor complex.

Most investigators now agree that glycine is an absolute requirement for the activation of the NMDA
receptor-associated cation channel, and it has been proposed that glycine and glutamate should be termed co-
agonists (5,19,25-27). However, some investigators have suggested that glycine may be required to activate
the NMDA receptor complex only under conditions of low glutamate concentrations (28,29), although most
of the current research does not appear to support this theory. Kinetic modeling and binding studies have
indicated that the NMDA receptor complex contains two binding sites for glutamate and two for glycine (30-
33), and the glutamate and glycine binding sites are postulated to exist on the same protein (34). The exact
nature of the interaction between these two ligands is unknown, as the reports of allosteric coupling are
controversial and contradictory. Kinetic modeling of these interactions has suggested that the two ligands
may show negative allosteric coupling (5,30), whereas binding studies have indicated that glutamate

increases the level of [*H] glycine binding (35-37) and glycine similarly increases the level of [*H] glutamate
binding (38,39). The latter studies suggest that glutamate and glycine exhibit positive allosteric coupling.
Nonetheless, it is apparent that both glutamate and glycine binding is required for the activation of the
NMDA receptor-associated cation channel.

Although the activation of the NMDA receptor complex requires the binding of both co-agonists, only
glutamate, which exhibits the characteristics of transient release, has been described as a 'true’'
neurotransmitter, while glycine appears to be present continuously in the synaptic space (5). There is
currently much debate concerning whether the levels of glycine in the CNS extracellular fluid (ECF) are
sufficient to saturate the NMDA receptor-associated glycine binding sites. Because glycine is one of the most
abundant amino acids in nature (it has been found in significant concentrations even in distilled water) (19),
measurements of glycine in the ECF have been controversial (40). Direct measurements have found
micromolar concentrations of glycine in the ECF, which is sufficient to saturate the SI glycine binding sites
(41). In vivo studies utilizing rats have reported that the co-administration of NMDA and glycine agonists
directly into the ventrobasal thalamus has only infrequently yielded small increases in NMDA receptor
activation over that produced by NMDA alone (41). In vitro studies with brain slices have generally found no
increase in the activation of the NMDA receptor complex (25,42), or only small increases (43), when an
NMDA agonist is co-administered with glycine. These studies have led some investigators to hypothesize
that the endogenous ECF glycine concentration may be enough to saturate the NMDA receptor complex in
vivo (12).

However, saturation of the NMDA receptor-associated glycine binding sites, if it is a true phenomenon, may
not occur in every brain microenvironment (44), such as that of the mossy fiber input to the cerebellar granule



cells (45). The glycine concentration in the neonatal rat hippocampus has been suggested to be at sub-
saturating levels, as the administration of glycine facilitates the response of NMDA in the hippocampus of the
neonatal rat, but not of the adult (44). Furthermore, the increase in cerebellar cyclic GMP, which occurs with
the administration of NMDA agonists in vivo, has been shown to occur with the administration of glycine
agonists (46-48), and glycine agonists have increased the seizure-inducing potency of NMDA agonists when
they are co-administered (49). These data, along with the discovery of specific glycine transporters in the
CNS (50), indicate that the levels of glycine in the ECF may not always exist at saturating concentrations,
especially at the synaptic cleft (51). It has been suggested that in areas of high NMDA receptor density, such
as the hippocampus, glycine may be differentially regulated by transporters so that glycine remains at sub-
saturating concentrations (50,52).

Whether due to regional differences in ECF concentrations of glycine, or to regional differences in the
subunits used to assemble the heteromeric NMDA receptor complex, both in vivo and in vitro studies suggest

that glycine has site-specific characteristics within the CNS (53,54). The increase in [PH] glutamate binding
that occurs with glycine administration is dependent upon the area of the CNS under investigation, suggesting
that regional heterogeneity exists for the glycine domain of the NMDA receptor complex (39,55). The
various pharmacological actions of NMDA antagonists also appear to be differentially modulated by glycine
(56), which may be attributable to regional differences in glycine concentrations or to regional differences in
the NMDA receptor complex.

In addition, the NMDA receptor complexes may not all be sensitive to glycine binding; for example, the co-
administration of glycine with NMDA in the striatum elicits only a small increase in NMDA binding when
compared with the administration of NMDA alone (29). Therefore, it is difficult to predict the actions of
glycine agonists or antagonists upon a particular function, such as learning or memory, based solely on the
expected activation or repression of the NMDA receptor complex.

Nonetheless, it is apparent that the regulation of the NMDA receptor complex by glycine is consistent in
some regards, as glycine antagonists resemble NMDA antagonists in most respects (25). Like NMDA
antagonists, glycine antagonists have been found to exhibit anticonvulsant (57-59), neuroprotective (60), and
anxiolytic (61,62) activities. Significant side effects of NMDA antagonists have been reported, including the
induction of heat-shock proteins, some of which are markers of neuronal damage (63,64). In contrast, glycine
antagonists apparently have no significant toxicity, even at high doses (25). Similarly, whereas glycine
agonists may only increase NMDA receptor function to the physiologic maximum, the NMDA agonists
exhibit considerable toxicity (65-67), potentially inducing excessive stimulation and, ultimately, cell death
(68). Glycine agonists and antagonists appear to have a greater safety margin than NMDA agonists and
antagonists (25,68,69), and therefore may prove to be more useful clinically (65,70).

D-CYCLOSERINE

D-cycloserine (DCS) has been found to interact with the SI glycine binding site associated with the NMDA
receptor complex (3,71), and pharmacokinetic studies have indicated that DCS exhibits approximately 15-
fold less affinity for this glycine binding site than glycine (72,73). The intrinsic activity of DCS was
estimated at 40% to 50% (3,74), although some reports have placed this value as high as 70% (66) or 86%
(73). Regardless, DCS can be considered to act as a partial agonist at the NMDA receptor-associated glycine
binding site (3,28,47,66,73-75). The in vivo agonist actions of DCS at the NMDA receptor complex can be
attributed to agonism of the glycine binding site, and not to an increase in glutamate release, as doses as high
as

320 mg/kg in rats and mice failed to induce any changes excitatory amino acid levels in the CNS (76).

DCS has been reported to have good oral bioavailability (2,66), but the degree to which it crosses the blood-
brain barrier exhibits inter-species variability. It has been reported that only 17% to 20% of DCS crosses the
blood-brain barrier in mice (56) and rats (76), while studies in humans have indicated that DCS freely crosses



this barrier (2,77). The half-life of DCS in the mouse is approximately 23 minutes (78), indicating that the
drug is rapidly cleared. DCS has a favorable toxicity profile (66,77), and most studies report that even at high
doses of up to 320 mg/kg, the compound has no appreciable side effects in mice and rats (56,79-81).
However, various adverse reactions to DCS involving the CNS have been noted in humans. For example,
DCS has been reported to induce tremor, dysarthria, psychotic states, paranoid reactions, catatonic reactions,
clinical depression, hyperreflexia, and paresis (2). In addition, the drug is generally contraindicated in
individuals with a history of epilepsy (2), as convulsions have been reported in some patients (82).

Studies with DCS have illustrated the myriad effects that can be pharmacologically manipulated by drugs
acting at the NMDA receptor complex. DCS has been reported to decrease the pain response elicited by
prolonged chemical noxious stimuli in mice (80), to enhance the development of rapid tolerance to ethanol in
rats (83), and to act as a sociotropic (approach-promoting) agent in mice (84). Although DCS is a glycine
partial agonist and, therefore, would be expected to exhibit either agonist or antagonist characteristics,
depending upon the glycine concentration, it does not provide the same protection that NMDA antagonists
exhibit against glutamate-induced neurotoxicity in cultured cerebellar granule neurons (85).

However, in a similar manner to the NMDA antagonists, DCS has been reported to have anxiolytic properties
in rat and mouse anxiety models. Intraperitoneal injections of DCS at doses of 30 - 300 mg/kg block the fear-
potentiated acoustic startle effect in rats, a model that is used to assess the anxiolytic activity of compounds
(86). No anxiolytic effect was noted when the concentration of DCS was 10 mg/kg, the lowest dose utilized
in this study. Similarly, in a mouse punishment procedure, wherein mice are trained to avoid a darkened
chamber with the use of a mild electric shock, DCS exhibited anxiolytic properties only at the dose of 1
mg/kg, and not at five times this dose (87). Although DCS acts as an anxiolytic in both models, the dose-
response curve generated is dependent upon the paradigm utilized and the neural pathways under
investigation. This phenomenon is apparent in all of the pharmacological effects of DCS.

DCS acts as an anticonvulsant in certain animal models; however, this property only emerges at doses greater
than 100 mg/kg, which are generally higher than those required to exhibit its other properties (76,88). DCS
has been reported to have anticonvulsant activities against maximal electroshock seizures in rats
(56,71,81,89). In addition, DCS elicits almost complete suppression of kainate-induced seizures in rats (79),
and antagonizes tonic convulsions induced by pentylenetetrazol (89). Some investigators have reported that
DCS raises the seizure threshold in fully amygdala-kindled rats, wherein the amygdala was repeatedly
stimulated so that an increased susceptibility to seizures was produced (90,91). In contrast, others have
suggested that DCS is ineffective in this model (89). DCS appears to have no antagonistic effects on
convlusions induced by (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (92), clonic
convulsions induced by pentylenetetrazol, electrically-induced nonkindled hippocampal seizures, or
strychnine-induced tonic convulsions (89). Therefore, the anticonvulsant activity of DCS, in a similar manner
to its anxiolytic properties, may be model and neural pathway dependent.

The administration of high doses of DCS, up to 320 mg/kg, in naive mice does not have a proconvulsant
effect (56), and DCS does not induce the paroxysmal activity in the limbic brain regions of kindled rats that
has been seen with the administration of glycine antagonists and NMDA antagonists (93). In contrast, high
doses of DCS in fully amygdala-kindled rats has been shown to be proconvulsant (91). Furthermore, DCS has
been reported to act as a proconvulsant agent in humans, as it has induced tonic-clonic and absence seizures
in susceptible individuals (2). These data indicate that DCS may act as an agonist in some animal models and
as an antagonist in others. These findings may be related to the differential regulation of ECF glycine
concentrations in the different micro-environments involved in each of these models; if the ECF glycine
concentration at a particular synapse is enough to saturate the NMDA receptor-associated binding sites, then
DCS could act as a glycine antagonist because of its lower intrinsic activity. However, if the ECF synaptic
glycine concentration is at sub-saturating levels, then DCS may act as a glycine agonist.



NOOTROPIC EFFECTS OF D-CYCLOSERINE

The cognitive-enhancing properties of NMDA agonists have been known for some time (7,8) and, because of
their interaction with the NMDA receptor complex, it has been speculated that glycine agonists would have
similar properties. At the doses used in most of the studies of nootropic activity, DCS has no apparent effect
upon the motivational state or the motor skills of experimental animals (94), suggesting that the actions of
DCS in these studies are most likely due to specific effects on learning and memory. Although most of the
research on the nootropic effects of DCS have utilized spatial memory tasks, DCS has been tested in other
paradigms; for example, DCS was found to increase the response acquisition rate for rabbits in an eye-blink
conditioning model (95).

In addition, the nootropic effects of DCS were examined in a punishment procedure involving a passive
avoidance test. In this model, rats or mice are trained to avoid a chamber in which the animal had previously
received an electric shock. To assess learning- or memory-enhancing properties of compounds, drugs are
administered before or after the training, respectively, and the latency to enter the chamber on a subsequent
trial is recorded. A study utilizing mice trained with a mild electric shock to avoid a darkened chamber found
that DCS had no effect on learning when administered at a dose of 1 mg/kg or

5 mg/kg prior to training (87). However, the NMDA antagonists AP7 and MK-801 exhibited memory-
impairing activity in this model that was not seen with either dose of DCS (87), and may be a result of its
intrinsic activity at the NMDA receptor complex. A separate study, in which rats were trained to avoid one of
two chambers with the use of a mild electric shock, found DCS to be effective in increasing the latency time
to enter a chamber at doses of 0.3 - 10 mg/kg (72). The difference between these two studies may be
attributable to species differences in sensitivity to DCS, although this explanation is unlikely, as other
paradigms that utilize mice have found increases in learning or memory with similar doses to those used in
rats. Therefore, it is more likely that the paradigm that made use of the darkened chamber may not be
sensitive enough to detect the subtle changes in cognition that may result from DCS administration.

Most investigators have found that DCS administration in rats and mice promoted spatial learning. Retention
of a thirst-motivated linear maze task was enhanced by the administration of 10 mg/kg, 20 mg/kg, or 80
mg/kg of DCS to mice immediately following training (66). In addition, a dose of 3 mg/kg of DCS
administered 20 minutes prior to training facilitated acquisition in this task. These data suggest that DCS may
have effects on both spatial memory storage and retention. Weakly-trained mice injected with 20 mg/kg of
DCS also exhibited greater retention of an electric shock-motivated T-maze task (96). However, this increase
was not seen with doses of DCS less than 5 mg/kg or doses greater than 40 mg/kg, indicating that although
the two models--the thirst-motivated linear maze and the electric shock-motivated T-maze tasks--both test
spatial learning and memory, each task is characterized by a distinct dose-response curve. Furthermore, a
study utilizing rats in a food-motivated T-maze task found no increase in spatial learning with a DCS dose of
3 mg/kg, but did find that this dose of DCS increased the acquisition of a reversal task in which rats were
trained to enter one arm of the T-maze and subsequently trained to enter the other (72).

Because most of the available paradigms that measure changes in learning and memory may lack the
sensitivity necessary to detect small increases or decreases in cognitive function in healthy animals, many
investigators have utilized lesioned animals or pharmacologically-induced deficits in learning and memory to
amplify the observable effects of nootropic compounds. Rats subjected to bilateral quinolinic acid-induced
hippocampal lesions, which induce cell loss but do not completely destroy the hippocampus, exhibit working
memory deficits that are reversible with the administration of 12 mg/kg of DCS prior to testing in a radial
arm maze (97). Deficits in spatial memory, such as impairments in the water-maze or the T-maze paradigms,
may also be induced by injections of scopolamine in healthy rats, which blocks the cholinergic input to the
hippocampus that is required for its functioning in memory tasks (98). These deficits are reversible by the
administration of doses of DCS ranging from 0.3 - 30 mg/kg (99,100).



Scopolamine-induced learning and memory deficits have also been investigated in primates. Injections of
3-14 mg/kg of DCS given to rhesus monkeys failed to reverse a scopolamine-induced deficit of a spatial
delayed response task; however, the highest dose of DCS administered, 14 mg/kg, elicited slight
improvements in particular tests (101). In contrast, elderly and young healthy human volunteers who received
both scopolamine and DCS exhibited marked improvement in tasks of logic and verbal functions over that of
volunteers who received scopolamine alone (102,103). This data again illustrates that the dose-response
curve and sensitivity of a particular task to DCS is dependent upon the function analyzed. For example,
although most studies utilizing more than one dose of DCS found an inverted u-shaped dose-response curve
for nootropic activity, each task and each species investigated exhibited a different optimal dose of DCS; this
value ranged from a dose of 1 mg/kg for the reversal of scopolamine-induced deficits in rats (100) to 20
mg/kg for the retention of a passive avoidance task in mice (96).

THE USE OF D-CYCLOSERINE IN AGING AND COGNITIVE DISORDERS

In the past, clinicians have attempted to use NMDA agonists to enhance cognitive function in conditions such
as mental retardation (7), and recently focus has been placed upon the possible therapeutic benefit of glycine
agonists. As noted above, the glycine agonists may exhibit a greater safety margin and, therefore, these
compounds may be more beneficial for therapeutic administration than the NMDA agonists because of the
possible toxicity of the latter (25,65,68,70). Because aging is associated with decrements in learning and
memory functions, some investigators have attempted to reverse these changes with glycine agonists. Aged
rats exhibit decreases in the NMDA-induced release of norepinephrine from rat hippocampal synaptosomes,
and DCS has been reported to increase this release, indicating a possible rationale for the use of DCS in the
reversal of age-related changes (22). Furthermore, aged rats show impairments in the water-maze paradigm,
and a 1 mg/kg dose of DCS was found to lessen the age difference between aged and young rats in both place
discrimination and repeated acquisition tests (104). In addition, DCS has been reported to reverse the
memory retention deficit associated with senescence-accelerated mice (96).

Some researchers and clinicians have advocated the investigation of DCS for the symptomatic treatment of
Alzheimer's disease (AD), a neurodegenerative disease characterized clinically by learning and memory
deficits (1,105,106). Post-mortem AD brains exhibit a selective impairment in the coupling of the glycine
binding site with the glutamate binding site of the NMDA receptor complex, as measured by the reduced

amount of glycine-stimulated [3H]MK-801binding in AD brains as compared with control brains (107). This
finding may result from a decrease in the number of NMDA receptor complex-associated glycine binding
sites, or in the sensitivity of these glycine binding sites. Therefore, the potential exists for clinical
improvement in AD patients through the administration of glycine agonists. In a small pilot study of six
patients with probable AD, five patients exhibited improvements with a dose of either 5 mg/kg or 15 mg/kg
of DCS administered over a seven-day period (1). A much larger study, which employed 108 patients with
probable AD, found that 15 mg of DCS administered twice daily significantly enhanced implicit learning and
retention over a three-day period (108). In contrast, a similar study which included 12 patients with probable
AD, found no significant or consistent improvement in cognitive function (109). However, it is clear that
these studies are too preliminary to reach a judgment on the clinical efficacy of DCS in the treatment of AD.

Because a functional interaction between the glutamatergic and dopaminergic pathways exists, the use of
glycine agonists has been postulated as a treatment for schizophrenia, a disorder in which the underlying
pathology has been attributed to an excessive stimulation of dopaminergic pathways (110). The increase in
dopaminergic activity in schizophrenia may be related to a decrease in glutamatergic transmission (1), and
this hypothesis has been corroborated by the low levels of glutamate found in the CSF of patients with
schizophrenia (111). In addition, DCS was found to inhibit the hypermotility in rats induced by the
administration of methamphetamine, which increases dopaminergic transmission. Similarly, DCS inhibited
the behavioral responses elicited by selective stimulation of the D1 or D2 dopamine receptor subtypes (112).
DCS was also reported in rats to enhance the neuroleptic activity of D1 and D2 receptor blockers (113), and



to decrease both the number and function of these dopamine receptors, leading to a decrease in dopaminergic
transmission (114). Therefore, DCS might be able to antagonize the effect of elevated dopamine levels seen
in schizophrenic patients through the stimulation of the NMDA receptor complex.

However, DCS elicited little response when it was utilized in a mouse hyperactivity model of psychosis
(115). Furthermore, in a clinical trial of seven patients with chronic schizophrenia who received 250 mg of
DCS as an adjuvant to conventional neuroleptics, only one patient exhibited a slight improvement (77).
Interestingly, this patient was the only patient with the catatonic type of schizophrenia enrolled in the study.
In contrast, a daily dose of 50 mg of DCS significantly reduced the negative symptoms and significantly
improved the reaction time of nine patients with chronic schizophrenia when combined with conventional
neuroleptics (116). Therefore, DCS may still prove to be beneficial in the treatment of certain forms or of
certain symptoms of schizophrenia, and further investigations are warranted. Similarly, glycine partial
agonists and glycine antagonists may also be effective in the treatment of other disorders such as Parkinson's
disease, in which the antagonism of glutamatergic transmission may lead to a reversal of the decreased
activity of the dopaminergic pathways (70).

One investigator has envisioned the administration of low doses of glycine agonists for use in conditions of
memory impairment without associated neuro- degeneration, and the use of high doses of these compounds in
cognitive impairments with associated neurodegeneration, or in the aging brain (106). It has been suggested
that the efficacy of DCS may be attributed to the relief of excessive glutamate antagonism from kynurenic
acid, an endogenous glutamate receptor antagonist whose levels have been shown to increase in conditions
associated with cognitive deficits (117). Furthermore, some pathological conditions may be related to the
dysfunction of the glycine transporter, for which glycine partial agonists could be useful in antagonizing the
saturation of the NMDA receptor-associated glycine binding site, without the complete antagonism seen with
glycine antagonists.

However, the clinical efficacy of compounds such as DCS is questionable, as chronic exposure to these drugs
has frequently led to desensitization. A dose of 3 mg/kg of DCS, which had previously been reported to
facilitate the retention of a thirst-motivated linear-maze task with acute post-training injections, failed to
exhibit an increase in retention when administered to mice for 15 days, with a subsequent acute post-training
injection (66). The desensitization seen in this experiment was postulated by the investigators to be produced
by a nitric oxide-induced downregulation of the NMDA receptor complex. This scenario is unlikely, however,
because chronic exposure to DCS had no effect on the protection to glutamate neurotoxicity exhibited by
NMDA antagonists, indicating that the receptor was still present after chronic DCS administration (85).

This author suggests that the NMDA receptor-associated glycine site may undergo selective desensitization,
independent of the glutamate binding sites. Therefore, the glycine binding site may 'uncouple' from the rest of
the NMDA receptor complex. This hypothesis is corroborated by the finding that while the NMDA
antagonists retained efficacy in the culture system above, compounds that act at the glycine binding site
exhibited reduced neuroprotection after chronic exposure to DCS (85). This uncoupling of the glycine
binding site from the NMDA receptor-associated glutamate binding site superficially resembles the state of
the NMDA receptor complex in AD, in which the efficacy of glycine at this binding site is also reduced

(107). Therefore, it is conceivable that some of the pathology in AD may be related to excessive stimulation
of the NMDA receptor-associated glycine binding site, which could result from dysfunctional ECF glycine
regulation. However, this hypothesis needs to be examined in further detail.

CONCLUSION

The nootropic effect of DCS in rats and mice for certain tasks appears to be well-established, although each
task analyzed has revealed a different optimal dose. However, the nootropic properties of DCS have not been
consistently seen in human and non-human primate models. The lack of response to DCS in these studies



may reflect the shifting dose-response curve that is found in the rat and mouse studies. Therefore, subsequent
studies in humans and non-human primates will need to examine multiple doses of DCS before a conclusion
can be drawn about the nootropic efficacy of this compound. The optimal dose of DCS for particular tasks
has been found to be as low as 1 mg/kg in rats (100), and the CNS concentrations of DCS in rats at this dose
may be as low as 0.2 mg/kg. Similarly, the studies in humans reporting that DCS enhanced learning and
memory utilized a CNS concentration of DCS of approximately 0.2 mg/kg (estimated for a 70 kg individual
with free access of the drug across the blood-brain barrier) (1,102). In contrast, studies suggesting that DCS
has no nootropic activity in humans and non-human primates utilized a dose of DCS that was at least twice
this concentration (101,109).

Although further investigations into the actions of DCS are required, especially those that utilize humans and
non-human primates, this compound holds promise for the symptomatic treatment of disorders such as
Alzheimer's disease, schizophrenia, Parkinson's disease, and the cognitive dysfunction associated with aging.
Furthermore, the issue of DCS-induced desensitization of the NMDA receptor-associated glycine binding site
needs to be addressed before DCS can be considered as a potential therapeutic for these chronic disorders.
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