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An Old Question Revisited: Current
Understanding of Aging Theories
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ABSTRACT  “Why we age” is no longer a solely philosophical question. In parallel with the rising
awareness of the social ramifications of an aging population, basic research has expanded our
understanding of the intricate nature of biological aging. The present paper aims at discussing our
current understanding of the molecular and cellular alterations that accompany aging. To this end, the
main theories on the mechanisms of aging, error theories and program theories, will be discussed.
Special focus on neuronal aging is also presented to provide illustrative examples of these aging
mechanisms.

INTRODUCTION

One rapidly becomes old, but learning is slow; therefore,

never waste a moment.

While this ancient Chinese proverb describes the
preciousness of every moment of our lifespan, it fits
interestingly with the impact of aging on our society.
The proportion of the aged population in the world is
increasing rapidly. Taking Canada as an example, the
population of over 65 is predicted to rise from the
present 3.5 million to 7.7 million in the next 25 years
(1). A similar trend can be found in the United States.
The population of over 65- and over 85-years old is

expected to increase two and five fold respectively in
the next 50 years (2). Indeed, thanks to the development
of technology and medicine, our life expectancy has
increased 50% in the last century (3). However, our
understanding of the biological mechanisms underlying
the aging process is progressing at a much slower pace.
For instance, the prevalence of disabilities in the aging
population has been decreasing only slowly in recent
years (4). Indeed, health care spending for elders in the
coming decades will become a substantial financial
burden to our society (5).

This paper will explore general concepts of aging,
including how we define aging and how aging occurs at
the most basic molecular and cellular levels. As will
become evident, both environmental and genetic factors
interact through multiple different mechanisms to produce
changes at the molecular and cellular levels that ultimately
manifest themselves as changes that are more easily
observed in tissues and organs, and in the organism as a
whole. Identification of and response to these gross
changes benefit from an understanding the underlying
mechanisms that produced them. In the long term, a
greater understanding of aging will provide solutions not
only to reduce the burden caused by the aged population to
the society but, more importantly, to extend the productive
and healthy lifespan of the elderly in the future.
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DEFINITIONS OF AGING
Perhaps the association between aging and phenomena

such as weakness, disease, and death is so strong that most
definitions of aging have focused on the adverse
characteristics in the last stage of life. Comfort in his book
The Biology of Senescence has defined aging as:

“A progressive increase throughout life, or after a given

stadium, in the likelihood that a given individual will die,

during the next succeeding unit of time” (6).

In Comfort’s view, aging happens as a result of a
progressive loss of physiological functions that
culminates in death. Indeed, the progressiveness of the
aging process has brought about the idea of ‘error
accumulation’ throughout the lifespan. For instance,
Harman has defined aging as:

“The accumulation of changes responsible for the

sequential alterations that accompany advancing age and

the associated progressive increases in the chance of

disease and death” (7).

Recent progress in aging research has led to frequent
revisions of the definition of aging. For instance, Busse
has divided the aging processes into primary and
secondary aging (8). In his view, primary aging is
intrinsic to the organism, and the detrimental factors are
determined by inherent or hereditary influences. On the
other hand, secondary aging is caused by deleterious or
hostile factors in the environment. However, due to the
complexity of the aging process, these descriptive
definitions of aging are always far from satisfactory.
Taking Busse’s definition as an example, since both
intrinsic and environmental factors have been shown to
interact with each other during the development of
various aging deficits, separating these factors into
independent processes is not realistic.

While it is difficult to define aging, describing when
aging begins is equally complicated. For example, even
though the rat is the most commonly used mammalian
model of aging, there are controversies in the definition of
an aged rat. Some investigators consider any sexually
mature rat to be old. Thus, 14-month-old rats have been
regarded as aged rats (e.g. reference 9), whereas rats
ranging from 24 to 30+ month-old are used as reference
for aged rats in other studies (e.g. references 10,11). One
way to define the starting point of aging is to use survival
curves (12). Survival curves are constructed by plotting
the percentage survival against the age of individuals in a
population. Rats can be considered as entering the aging
stage when their survival percentage is lower than 50%.
For instance, based on survival curves of Sprague-Dawley
(13), Wistar (14), Fischer (15), and Brown Norway rats
(16), their 50% survival age ranged from 27 to 30 months.

While the focus here is admittedly biological, the
social aspects of aging cannot be completely
disregarded. For instance, in regards to what age would
be considered ‘old’ for a person, the common answer
would likely depend much more on social factors than
on biological ones. With that said, the paper will not
digress further from its stated biological focus.

MECHANISMS OF AGING
The maximum lifespan is dependent not only on the

genetic heterogeneity that characterizes different
species, but also on variable environmental influences
(17-20). These influences of both nature and nurture
give rise to various aging phenotypes that cannot be
easily explained by a single hypothesis. Instead, many
theories based on fundamental molecular, cellular, and
systemic analyses of aging have been developed in the
last few decades. These theories, which are not
necessarily mutually exclusive, have been classified by
the National Institute of Aging into two major
categories. Program theories hold that aging is the result
of the sequential switching on and off of certain genes
whereas error theories emphasize that aging is the
outcome of both random accumulation of error
mutations and wear and tear of tissues and organs during
the lifespan of an organism. The following sections
summarize examples of both types of theories of aging.

ERROR THEORIES

Accumulation of mutations
Somatic mutations, including gene mutations, gene

conversion, and gene amplifications, chromosomal
abnormalities, and mitotic recombinations, have been
widely agreed to play important roles in the
development of aging (for review, see reference 21).
This hypothesis stemmed from the observation that
damages induced by irradiation in animals resembled
phenotypic changes in aging (22). Since radiation was
well known to be able to induce mutations, aging could
be caused by accumulation of mutations after life-long
exposure to natural levels of background radiation and
other environmental agents (23,24). In fact, X-ray-
induced chromosomal damages have been shown to
shorten life expectancy (25). Another source of errors
comes from DNA replications. It has been estimated that
the error rate of DNA replication can be as high as
0.01% (26). There are systems to maintain the precision
of DNA replications and, indeed, the ability to repair
DNA in different organisms has been shown to correlate
directly with their maximal lifespan (27,28). However,
the ability to repair DNA has been shown to decrease
with age (29,30). These two sources of damage,
mutations by environmental factors and during DNA
replication, may lead to significant levels of
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chromosomal abnormalities in aged tissue (30-34).
Consistent with these mechanisms, aberrations of DNA
material can be found in the nucleus (35) and the
mitochondria of aged cells (36,37).

One major criticism of the somatic mutation theory is
that natural radiation under normal conditions may be
too low to account for the overall age change
(30,38,39). However, recent findings from monitoring
mutation of specific genes at different time points
during life showed significant levels of mutation in
aged tissue. For example, studying the mutation rate of
the hypoxanthine phosphoribosyl transferase (HPRT)
gene revealed significantly higher mutant frequencies in
aged mice (40) and humans (41). Monitoring a neutral
reporter gene lacI during the development of transgenic
mice also revealed accumulation of mutations with age
(42-44). Interestingly, animals with caloric restriction,
the only intervention that appears to lengthen lifespan
(45,46), accumulate HPRT mutations at a much slower
rate when compared with ad libitum fed animals
(40,47). On the contrary, accumulation of HPRT
mutations is higher in the senescence accelerated mouse
model, which develops aging phenotypes earlier than
normal mice (48). Thus, accumulation of mutations
could be a major factor in determining biological aging.

Although the somatic mutation theory predicts the
accumulation of mutations randomly during aging,
increasing evidence shows that some genes accumulate
more errors than other genes with time. For instance,
human leukocyte antigen (HLA) genes have a mutation
frequency two to three times higher than that of HPRT
genes (49). In addition, some regions of the genome
display above average mutation rates. These mutation hot
spots usually contain repeat elements (50,51). One of the
important examples is the telomere, which is present at
the end of each DNA strand (for review, see reference
52). Accumulation of mutations in the minisatellite
repeat elements of the telomere hinders the DNA
synthesis machinery to replicate the very end of the
lagging strand and results in chromosomal aberrations
(53). Shortening of telomeres with age has been reported
in different tissues (54). More importantly, reversing the
shortening of telomeres has been shown to arrest the
aging process. For instance, expressing telomerase, a
ribonucleoprotein that is capable of correcting telomere
shortening by adding TTAGGG repeats to chromosome
ends, not only maintains the length of telomeres, but also
extends the lifespan of human cell lines (55). Thus, even
with a low overall mutation rate, the occurrence of high
mutation rates in specific genomic locations in aging may
result in substantial age-related functional alteration.

Accumulation of genetic errors may give rise to several
cellular end points which are related to the development
of aging. One of the major consequences of mutation
load is cell death (56). Cell death has been shown to

contribute to various age-related functional deficits,
including heart failure (57), kidney dysfunction (58), and
decline of immune function (59). Indeed, apoptosis could
be a mechanism for removing aged cells during aging
(60-62). Cell loss resulting from removal of mutated cells
could be related to the functional decline with aging.
Mutation load with aging could also result in alteration of
gene expression. For instance, aberrant expression of
globin RNA in the liver and brain of older mice is higher
than in younger controls (63). In addition, DNA
methylation at CG bases, which relates to inactivation of
gene expression, has been shown to decrease with age
(64,65). These detrimental consequences of mutation
load during aging could explain the development of
functional age-related declines.

Wear and Tear
The wear and tear theory claims that with repeated

use, parts in living organisms wear out and give rise to
defects. These malfunctions provide the cellular
substrate for the build up of physiological deficits in
aging. The premise of this theory is based on the
observation that the lifespan of poikilotherms is
shortened by increasing the environmental temperature
and prolonged by decreasing it (66,67). Indeed, active
tissues with high rates of cell turnover have been shown
to contain more age-related lesions. For instance, more
rapid telomere loss can be found in the endothelial
lining of blood vessels that were exposed to high
hemodynamic stress and underwent rapid turnover (68).

Apart from damages caused by repeated usage,
various exogenous or endogenous agents can damage
biological macromolecules with time. Among the most
common endogenous agents is the free radical (for
review, see reference 69). Free radicals are reactive
molecules containing one or more unpaired electrons
and are produced during normal oxidative metabolism
(70,71). Free radicals are able to attack other molecules
indiscriminately and cause fragmentation or cross-
linking of molecules (7). An increase in the level of free
radicals was found in aged brains (72). The level of
oxidized lipid (73) and protein (74) is also higher in aged
tissue. In addition, cross linkage of both membranous
structures (75) and DNA (76,77) have been shown to
increase with age. Mitochondrial DNA, which lacks the
protection of histones and suffers more directly from the
de novo production of free radicals, has been shown to
mutate at a much higher rate than nuclear DNA (78).
Interestingly, comparative studies also reveal an inverse
correlation between the level of oxidative burden and
maximum life expectancy in different organisms (79).

The production of free radicals is normally controlled
by various protective systems in our body. They include
enzymes like superoxide dismutase (SOD), catalase, and
glutathione peroxidase that break down newly produced
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free radicals into less reactive derivatives (for review, see
reference 80). Antioxidants like vitamin E and C also
play important roles in reducing active free radicals (81).
While contradicting findings on the effect of these
antioxidant enzymes on aging was found (e.g. see
reference 82), there is evidence of insufficient antioxidant
activity in aged tissue. For instance, dietary supplements
of free radicals scavengers has been shown to reduce age-
related declines in neuronal signal transduction and
cognitive or motor behavioral deficits in aged rats (83).
Indeed, some longevity genes have been shown to be
related to the development of oxidative stress. For
example, mutation of mev-1, which encodes a subunit of
the enzyme succinate dehydrogenase cytochrome b,
results in higher production of free radicals and shorter
lifespan (84). Thus, increased free radical production and
insufficient antioxidant activity in aged tissue may
contribute to functional deficits with age.

PROGRAM THEORIES
The underlying assumption of program theories is the

existence of genetic programs that determines the
maximum lifespan for each species. Evidence to support
these theories includes the observation of sequential
activation and repression of genes during different stages
of development. For instance, studies on rat liver cytosolic
alanine aminotransferase (cAAT) have shown that the
gene for A type cAAT is active in the early developmental
stages and subsequently repressed. However, the
expression of B type cAAT is only activated in old age
(85). Similar programmed activation of some senescence
markers has been reported. A liver protein named as
senescence marker protein 2 is expressed maximally
during prepuberty and older age (86).

Another important finding to support program
theories of aging is the presence of longevity
controlling genes. Mutation of some genes in the
nematode Caenorhabditis elegans has been shown to
extend life expectancy of the nematode by 40 to 100%.
Examples of these genes include age-1, daf-2, and 
clk-1 genes (87-89). Life expectancy of a daf-2/clk-1
double mutant is five times longer than that of the wild
type (90). While program activation of these potential
longevity genes may be important in determining the
lifespan of different organisms, evidence for similar
candidate longevity genes in humans is lacking.

EXAMPLES OF THESE MECHANISMS IN
NEURONAL AGING

Because most neurons do not replicate, one would
expect that they are protected against errors arising from
DNA replication. However, due to the large size and high
metabolic rate of neurons, neuronal survival depends on
high rate of oxidative phosphorylation (91). This may
result in a large amount of free radical production and thus

confer the nervous system with a high vulnerability to
oxidative stress. Indeed, this high neuronal vulnerability
toward oxidative stress may be responsible for the
mitochondrial DNA mutations (92,93) and nuclear
mutations (77,94-96) observed in aged neuronal tissue.

Apart from inducing mutation, oxidative stress also
plays important roles in the development of other age-
related neuronal damage. High levels of free radicals
have been related to the etiology of neurodegenerative
phenotype in Alzheimer’s disease (97,98) and
Parkinson’s disease (99,100). For instance, oxidative
stress has been shown to cause the death of
dopaminergic neurons in Parkinson’s disease (101,102).
Apoptosis can be induced by damage resulting from
oxidative stress (for review, see reference 103).

While the mechanism by which free radicals damage
neuronal tissue is still unknown, these reactive elements
may play important roles in several age-related neuronal
lesions. Oxidative stress has been suggested to cause
accumulation of lipofuscin in the neurons from aged
brains (104,105). Diet supplement of vitamin E can
reduce the density of lipofuscin in aged neurons (106).
Lipid peroxidation of neuronal membrane induced by
free radicals may also play important roles in the
modification of neuronal structures. For instance, long-
term (10 months) removal of vitamin E from the diet
results in a significant decrease in the number of
synapses in the cerebellum (107). Finally, not all
neuronal structures or function are equally susceptible to
oxidative damage. For instance, in vitro studies of the
effect of H2O2 revealed no effects on excitatory synaptic
transmission, whereas reductions in transmembrane Cl-

gradient and inhibitory neurotransmission were found
(108). The observed disappearance of inhibitory inputs
may result in a rise of the level of excitatory
neurotransmitters, which increase the possibility of
neuronal damage due to excitotoxicity (109-111).

Findings of roles played by different molecular and
cellular factors in aging have helped us understand better
the age-related change at the level of organs and
systems. For instance, oxidative damages have been
associated with the loss of synaptic connections in aged
brain (107). This age-related loss of neuronal
connectivity has been related to the reduced neuronal
activity in aged brains (112,113), which in turn may give
rise to the development of age-related cognitive declines
(114). However, translation of these cellular deficits into
age-related pathologies is also difficult to understand.
For example, reduction in synaptic structures in aged
brain does not always result in an alteration of neuronal
function. In fact, physiological compensation after the
loss of synapses in aging by the neuronal circuitry has
been reported in the hippocampus (115) and cerebral
cortex (116). A more thorough comprehension of age-
related changes in molecular, organic, and systemic
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levels is therefore necessary to uncover the underlying
mechanism of age-related pathologies.

SUMMARY
Aging results from a complex interplay between

multiple different mechanisms. The predominant
mechanism or combination of mechanisms depends on
the particular tissue or cell type in question.
Nonetheless, a common theme is alteration of gene
products or expression. This may occur accidentally
over time because of either intrinsic or extrinsic factors,
or it may represent part of a predetermined sequence of
events. However, it is often difficult to identify whether
altered expression of a certain gene is the primary cause
or if it is secondary to some other factor, and even gene
mutation can represent reduced capacity for repair
rather than increased rates of mutation per se. Another
level of complexity is added to the picture when one
considers how the primary changes are manifested at
the level of cells, tissues, and organs, let alone the
organism as a whole. In turn, developing treatments to
delay or ameliorate age-related deterioration of function
is a complicated task, but it will ultimately benefit from
detailed understanding of the underlying changes.
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