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ABSTRACT

Evidence suggests that Caesarean section birth in the rat, with or without an additional period of
anoxia, results in long-term changes in brain catecholamine levels as well as reactivity to stress. The
purpose of the present investigation was to determine whether Caesarean birth plus anoxia alters
(alpha)2-noradrenergic receptor binding and sensitivity to the (alpha)2 receptor agonist, clonidine, in
the Porsolt forced swim test. Sprague Dawley rat dams were decapitated and the uteruses were
removed by Caesarean section. Pups were then delivered either immediately (Caesarean Only group),
or were immersed in a saline bath for approximately 15 minutes (Caesarean plus Anoxia group) before
delivery of the pups. A third group of animals born vaginally served as controls (Vaginally-born
group). Four to five months postnatally, the expression of (alpha)2 receptors was measured by receptor
autoradiography using [3H]-Rauwolscine binding. Receptor binding was increased in the area of the
ventral hypothalamus and decreased in the CA1 region of the hippocampus in animals subjected to
Caesarean plus Anoxia at birth. These animals also displayed a subsensitive response to the
immobilizing effects of clonidine (100 micrograms/kg, i.p.) in the Porsolt forced swim test. Specifically,
these data show that Caesarean birth produces long-term changes in (alpha)2 receptor density and
that, in animals subjected to Caesarean plus anoxia, these changes are reflected in a behavioral
subsensitivity to the (alpha)2 agonist, clonidine. The findings reported here provide further
experimental support for the hypothesis that birth complications may contribute to the
pathophysiology of disorders such as schizophrenia that involve central catecholamine dysfunction.

INTRODUCTION

There is an emerging body of evidence correlating psychiatric disorders, schizophrenia in particular, to
obstetric complications at the time of birth (1-10). While a number of such complications have been
identified as potential risk factors for schizophrenia, including breached birth, delayed labor, Caesarean (C)-
section, or umbilical cord prolapse, the exact nature of the perinatal insult remains a matter of speculation.
However, one consequence common to many of these perinatal complications is an episode of anoxia to the
fetus. Exactly how intrauterine anoxia might increase the risk of developing schizophrenic symptoms is even
less clear, but one possibility is by altering the function of brain catecholaminergic systems, particularly



dopamine (DA) and norepinepherine (NE).

Dopamine has been implicated in the pathophysiology of schizophrenia, in part, from evidence that
amphetamine (an indirect DA agonist) can elicit psychotic symptoms that are clinically indistinguishable
from positive symptoms observed in paranoid schizophrenics (11-13). Furthermore, the clinical antipsychotic
efficacy of the classical neuroleptics is directly related to their potencies in blocking DA D2-like receptors
(14-16). NE (also known as noradrenaline) is associated with schizophrenia because it has been shown to be
elevated in postmortem brain and cerebrospinal fluid (CSF) of schizophrenics--especially in those suffering
from positive symptoms or of the paranoid type (17-22).

Bjelke et al. reported evidence consistent with the idea that birth complications may affect catecholaminergic
function (23). This study reported an increased number of tyrosine hydroxylase (TH)-immunoreactive cells in
the ventral tegmental area (VTA) and substantia nigra of 21-day old rats that had been subjected to a period
of intrauterine anoxia at birth. TH is an enzyme responsible for catalyzing the synthesis of catecholamines
and thus serves as a marker for DA and NE neurons. Other studies have shown that perinatal anoxia induces
long-term changes in various neurotransmitter systems, including dopamine (24), and short-term alterations
in Fos immunoreactivity (25).

Previously, the present authors' group has found that an animal model of C-section birth, with or without an
additional period of anoxia, can produce, upon adulthood, a sensitized nucleus accumbens DA response to
repeated mild stress, resulting in enhanced stress-induced DA release (26). In addition, anoxia at birth
facilitates sensitization to the locomotor stimulant effect of stress and amphetamine in adult rats (27). Taken
together, these findings suggest that a period of anoxia to the fetus can lead to long-lasting changes in central
DA function and increased sensitivity to the effects of repeated stress.

In the central nervous system, one of the principal components of the stress response is the locus coeruleus
(LC) NE system, whose projections to the cortex, hippocampus and hypothalamic nuclei are instrumental in
regulating the release of many hypothalamic peptides which drive the peripheral stress response (28). After a
single exposure to any of a variety of stressors, intracellular NE levels are decreased, corresponding to an
increase in activation-induced NE release from neurons (28). These NE neurons are regulated, in part, by
inhibition through presynaptic (alpha)2-noradrenergic autoreceptors. Studies indicate that application of *2
antagonists produce anxiety-like symptoms, presumably by increasing NE release.

The aim of the present investigation was to determine whether birth complications affect the function of NE
systems in the adult brain. Specifically, the purpose was to determine whether birth by C-section or C-section
with an additional period of transient anoxia may alter the density of brain (alpha)2-noradrenergic receptors
and, if so, to determine whether such changes are behaviorally relevant.

MATERIALS AND METHODS

Intrauterine anoxia

All procedures involving animal subjects were carried out in strict accordance with the guidelines established
by the Canadian Council on Animal Care. Intrauterine anoxia was induced using a modified version of the
delayed C-section method described by Bjelke et al. (23). On the day of parturition, Sprague Dawley rat dams
(Charles River, St. Constant, Canada) were decapitated and hysterectomized. The entire uterus, including the
fetuses, was then removed and immediately immersed in a 37oC saline bath for approximately 15 minutes
(Caesarean plus Anoxia); from the time of decapitation, it typically took 30-40 seconds to hysterectomize the
dam and remove the uterus. The pups were then removed from the uterus and, if necessary, gently palpated to
initiate breathing. Pups were placed on a heating pad until they were paired with a foster dam. In the present
study, the period of anoxia was defined as the time the uterus was removed from the dam to the moment the



pups began breathing on their own. The majority of pups began breathing normally within 60 seconds after
removal from the uterus1.

The present study also included two groups of control animals. One group of controls comprised pups that
were born vaginally (Vaginal Control). The other comprised animals that were removed from the uterus
immediately after being delivered by C-section (Caesarean Only). Thus, apart from the 30-40 seconds during
which the dam was hysterectomized and the uterus was removed and the 40-60 seconds required to initiate
breathing in all the pups of the litter, animals in the Caesarean Only group were not subjected to any
additional period of anoxia. Only male pups were included in the study to avoid the possibility of
confounding group effects with sex differences. Pups were cross-fostered by surrogate dams; each dam was
matched with an equal number of pups from each group. Upon weaning at 21 days, animals were dually
housed on a 12 hr light/dark schedule (lights on at 08:00 hours) with food and water available ad libitum.

Receptor autoradiography

At four months of age, three animals from each group were decapitated and the brains were immediately
removed and frozen in isopentane (-40oC) and then stored at -80oC. Frozen brains were sectioned at 15
micrometers thickness on the coronal plane, thaw-mounted onto gelatin-coated slides, desiccated under
vacuum overnight at 4oC, and then stored at -80oC.

For (alpha)2-noradrenergic receptor binding, coronal sections taken at the level of the striatum as well as the
posterior hypothalamus were first preincubated for 10 minutes at room temperature in buffer containing 50
mM Tris-HCl, 10 mM MgCl2, 4 mM CaCl2, 10-5 M Pargyline, and 0.01% ascorbic acid (pH 7.5). Sections
were then incubated for 60 minutes at room temperature in the same buffer with the addition of 0.9 nM [3H]-
Rauwolscine, which binds (alpha)2-noradrenergic receptors. Nonspecific binding was determined on adjacent
brain sections by adding both 0.9 nM [3H]-Rauwolscine and 10µM Yohimbine to the buffer. Incubations were
terminated by dipping slides in ice-cold buffer followed by two consecutive 5 minute washes in buffer. After
the final wash, slides were rinsed in ice-cold distilled water and then dried at room temperature, at which
point they were apposed to [3H]-hyperfilm alongside microscale-calibrated tritium standards. After four
months of apposition, films were developed and receptor binding was quantified using a computerized image
analysis system (MCID-4, Imaging Research, St. Catherines, Ontario).

Behavioral testing

At approximately five months of age, animals from each group (n = 16/group) were tested for immobility in
the Porsolt forced swim test. In the Porsolt forced swim test, a rat is forced to swim in a confined space with
no route of escape, and will cease to struggle and simply float after an initial period of vigorous activity (29).
This behavior may be interpreted as a survival mechanism where the animal learns that struggling is hopeless
and that immobility will minimize its energy expenditure, thus preventing drowning. Some investigators have
labeled this as a test of behavioral despair because anti-depressants seem to increase the period spent
struggling (30). This test has also been shown to be extremely sensitive to presynaptic (alpha)2 receptor
agonists which inhibit NE release in the brain and subsequently increase time spent immobile (30).

Rats were injected either with the (alpha)2 receptor agonist, clonidine (100 micrograms/kg, i.p.), or an
equivalent volume of saline. Twenty minutes after drug administration, animals were individually placed in a
cylindrical Plexiglas container (height: 50 cm, diameter: 30 cm) filled to a depth of 40 cm with water
maintained at room temperature. Rats were tested for 15 minutes and scored for time spent swimming. An
animal was scored as being immobile when it ceased struggling or swimming and made minimal movements
of its limbs to keep its head above water.



RESULTS

Receptor autoradiography

The results from four brain sections analyzed from each birth condition group are summarized in Table 1.

A one-way analysis of variance (ANOVA) was used to determine differences in receptor binding between the
groups in each brain region. Post hoc analysis was carried out using the Scheffe F-test. C-section with or
without an additional period of anoxia induced greater receptor binding in the ventral hypothalamus (Figure
1) --an area including the arcuate nucleus, dorsomedial nucleus, and premammillary nucleus--when compared
to vaginally-born controls (F(2,11) = 26.27, p = 0.0002). Animals born via C-section plus Anoxia showed less
receptor binding in the CA1 region of the hippocampus when compared to Vaginal Controls or rats born via
Caesarean alone (F(2,11) = 42.77, p = 0.0001). Conversely, the C-section plus Anoxia group exhibited greater
receptor binding in the area of the posterior hypothalamus when compared to the two other groups (F(2,11) =
9.422, p = 0.0018). There were no observable changes between birth groups in the striatum, cortex, or dentate
gyrus.

Porsolt forced swim test

A two-way ANOVA was used to determine differences between birth groups and drug treatment in time spent
swimming (Figure 2). Swim time following clonidine treatment was significantly lower than that following
saline treatment (F(1,32) = 19.042, p = 0.0001) for all birth groups. Hence, clonidine significantly increased
immobility (p < 0.05; Tukey's HSD). There was a significant difference in time spent swimming between the
Caesarian plus Anoxia group and the Vaginal Control group (F(2,32) = 3.700, p = 0.035) such that the
Caesarean plus Anoxia group spent more time struggling when compared to aginally-born controls (p < 0.05;
Tukey's HSD). There was no significant interaction between drug treatment and birth group, i.e., the
difference in time spent swimming between clonidine and saline treated animals was not dependent on birth
group.

DISCUSSION

The current study demonstrated that a rat model of Caesarean-section birth, with or without an additional
period of anoxia, produces an increase in (alpha)2 receptor density in the ventral hypothalamus of the young
adult rat, suggesting that the Caesarean procedure itself is enough to induce long-lasting changes in
noradrenergic systems in the brain. Interestingly, only the C-section plus Anoxia group showed a decrease in
hippocampal, or increase in posterior hypothalamic, receptor binding. Thus, additional anoxia induces
changes beyond the Caesarean effect. That C-section alone induces long-term changes in catecholamine
systems is in accordance with previous findings of the present authors and colleagues. It was found that the
Caesarean procedure, with or without additional anoxia, was sufficient to facilitate stress-induced
sensitization of nucleus accumbens dopamine release (26). Yet, it was also found that only the C-section plus
anoxia birth condition sensitized animals to the locomotor stimulant effect of amphetamine (27). Thus, it
appears that the Caesarean procedure used here is enough to evoke long-term changes in brain catecholamine
systems, whereas the additional period of anoxia induces further qualitative alterations.

Most noradrenergic input to the cortex and associated structures is provided from cell bodies in the LC. These
neurons play a role in orienting and attending to sudden contrasting or aversive stimulatory input (for review,
see 31). Evidence suggests that NE increases the excitability of hippocampal neurons by acting on (beta)-
adrenergic postsynaptic receptors. Thus, the observed decrease in CA1 presynaptic (alpha)2-noradrenergic
autoreceptor binding in anoxic animals (Caesarean plus Anoxia group) may serve to increase neuron
excitability in this area by increasing NE release.

https://web.archive.org/web/20121012163411/http://www.medicine.mcgill.ca/mjm/issues/v03n01/anoxiaT1.html
https://web.archive.org/web/20121012163411/http://www.medicine.mcgill.ca/mjm/issues/v03n01/anoxiaF2.html


The increase in (alpha)2 receptor binding seen in the ventral hypothalamus probably reflects an increase in
either affinity or abundance of these receptors in the arcuate nucleus (see Figure 1). Most of the noradrenergic
input to this area, as well as the posterior hypothalamus, derives from cell groups in the lower brainstem and
LC (32). These NE afferents are thought to synapse onto DA cells in the arcuate that project in turn to the
median eminence and play an inhibitory role in the release of prolactin as well as several hypothalamic
releasing hormones (for review, see 33). Stressful stimuli induce prolactin release, probably via inhibition of
hypothalamic DA neurons; although the precise mechanisms are not understood, these neurons may well be
regulated by postsynaptic adrenergic receptors located on DA cells. Thus, because presynaptic (alpha)2
receptors reduce NE release, animals born via C-section may possess an altered regulation of prolactin
release (as well as hypothalamic releasing hormones) during stressful events. The role of prolactin during
stress is undetermined; however, some evidence suggests that it may be involved in modulation of immunity
by increasing antibody production and enhancing the lactogenic immune response in neonates (34).
Accordingly, further investigation on anoxia at birth and its long-term effects on hypothalamic and pituitary
hormones is merited.

In the present study, animals born via C-section plus an additional period of anoxia showed reduced
immobility in the forced swim test when compared to Vaginal Controls. While there was no significant
statistical interaction, it can be seen in Figure 2 that the differences between the Vaginal Control group and
Caesarean plus Anoxia group lie predominantly with those animals that received clonidine. Thus, the trend in
these data indicate that C-section plus Anoxia animals were less sensitive to the immobilizing effects of
clonidine when compared to those born vaginally. Insofar as this is the case, it can be speculated that C-
section plus Anoxia induces a long-term reduction in (alpha)2 receptor sensitivity to clonidine.

The overall significance of the present finding that *2 receptor binding was increased in some brain regions
while decreased in others is difficult to assess. Clonidine acts on (alpha)2 autoreceptors situated on NE
neurons arising from the LC and brainstem regions, therefore these data suggest that the sum of (alpha)2
receptors involved in the Porsolt forced swim task are either less sensitive or less abundant. Fewer or less
sensitive (alpha)2-noradrenergic receptors would result in higher levels of NE release and subsequent
increases in general anxiety and peripheral autonomic stress responses. Further research is needed to
determine the role of the LC in these animals before any definitive conclusions may be drawn.

Factors intrinsic to the Caesarean procedure used here that may have contributed to the observed changes in
(alpha)2 receptor binding and clonidine sensitivity have been discussed in detail elsewhere (26). Briefly,
previous research has demonstrated that animals born by 
C-section alone show reduced levels of plasma catecholamines at birth (35) and of plasma corticosteroids one
hour after birth in comparison to vaginally born controls (Boksa, submitted). Since both catecholamines (36)
and corticosteroids (37) promote maturation of lung function during the first few hours postnatally, these data
suggest that delayed lung maturation is likely to occur following C-section birth, potentially resulting in
transient hypoxia.

It should be noted that although rats born by C-section with or without added anoxia show behavioral
alterations on specialized testing, these animals appear normal on a gross behavioral level as adults and show
no abnormalities on generalized testing of sensorimotor function (38). Rats born via C-section followed by 15
minutes of anoxia do, however, show subtle deficits in acquisition of a spatial learning task in the Morris
water maze (38). Additionally, both animals born via C-section alone and those born by Caesarean with
added anoxia exhibit reduced secretion of corticosterone in response to acute restraint stress, as well as
reduced levels of corticosteroid type I receptors in hippocampus and hypothalamus (39). Such altered
hormonal responses to stress may contribute to the altered behavioral responses associated with stress in
these animals.

https://web.archive.org/web/20121012163411/http://www.medicine.mcgill.ca/mjm/issues/v03n01/anoxiaF2.html


The animal model of perinatal anoxia used here has several shortcomings if it is to be compared to the human
condition. Rats are born at an earlier developmental stage than humans, such that the human brain at birth
more resembles that of the 10 day old rat (40-42). Thus, this model may better reflect human prenatal anoxia
if considered from a developmental standpoint. Furthermore, the current medical procedure of Caesarean
delivery is much more sophisticated than that used for this animal model, with measures being taken to
ensure that anoxia is avoided. However, studies have shown that despite these efforts, severe prolonged
hypoxemia may occur in preterm human infants without changes in the rate of breathing or heart rate (43).

Taking into account the limitations of this model, it nonetheless has the potential to reveal how complications
during the birthing event or early development may lead to long-term changes in brain development. As such,
this model may be useful to study possible mechanisms underlying birth condition associated changes in
brain development. Specifically, this is important for disorders that have been correlated with obstetric
complications, such as schizophrenia.

In conclusion, C-section birth with an additional period of anoxia induces long-term increases in (alpha)2-
noradrenergic receptor density in the hypothalamus while decreasing receptor density in the CA1 subfield of
the hippocampus. Furthermore, this birth condition causes subsensitivity to clonidine in the forced swim test
upon adulthood. These changes may be associated with a heightened sensitivity to stressful stimuli upon
adulthood. This study underscores the need for further investigation into the NE stress responses in adult
animals that received perinatal anoxia and the characterization of hypothalamic and pituitary hormones in
these animals. Finally, considering the documented associations of schizophrenia with both obstetric
complications and catecholamine dysfunction, the results of the current study are of considerable clinical
interest and underscore the need for further research in this area.
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