
OR I G I N A L R E S E A RCH
McG i l l Jou rna l o f Med i c i n e

Evaluating Uncertainty in Dengue Seroprevalence
in the Absence of a Gold Standard Diagnostic Test

Tess Baker1 | David B. Wolfson1

1Department of Mathematics and Statistics,
McGill University

Correspondence
Tess Baker
Email: tess.baker@mail.mcgill.ca

Publication Date
October 7, 2020

MJM 2020 (18) 21

www.mjmmed.com

This work is licensed under a Creative
Commons BY-NC-SA 4.0 International
License.

AB S T R AC T
Background: Shortly after the introduction of the first licensed vac-

cine against dengue fever (Dengvaxia), a serious outcome was attributed
to the vaccine: vaccinated individuals without a previous dengue infec-
tion were at increased risk of developing severe dengue if subsequently
infected by a heterologous serotype. In response, theWorld HealthOrga-
nization recommended vaccination in regions where the seroprevalence
of dengue is at least 50% and, ideally, greater than 70%. Hence, accu-
rate estimates of regional seroprevalence are crucial for both population
vaccination strategies and test-then-vaccinate decisions at the individual
level. Currently, estimates of seroprevalence are based on surveys, us-
ing screening tests for previous dengue exposure. These estimates must
consider the sensitivity and specificity of the tests, which depend on iden-
tification of those who have been exposed, ostensibly through a test, re-
garded as the gold standard. There is, however, no easily accessible gold
standard test for dengue.

Methods: We propose an approach to estimate the seroprevalence
of dengue that does not require a gold standard test by modeling: (i) the
uncertainty in the sensitivity and specificity, and (ii) the uncertainty in the
“true” disease prevalence.

Results: Through simulations, we demonstrate the effect of these
extra sources of uncertainty on post-test estimates of dengue seropreva-
lence. Our simulations show, for example, that in a population of 1million
it is possible to overestimate or underestimate the number who are truly
seropositive by as much as 76,000.

Conclusions: Current estimates can substantially overestimate or
underestimate the true probability of previous exposure when these ex-
tra sources of variability are not accounted for.

K E YWORD S
dengue, dengue vaccine, simulation, seroprevalence survey, sensitivity and
specificity, latent class models
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1 | INTRODUCTION

Dengue fever is the most common arbovirus infec-
tion globally, infecting approximately 390 million peo-
ple each year, and is endemic in more than 100 coun-
tries (1, 2).The virus, which has four distinct serotypes,
is unusual in that infection with one serotype does not
confer long-term immunity against the other three (3).
On the contrary, a secondary infection by a heterolo-
gous serotype is often far more severe than primary
dengue infections–a phenomenon known as antibody-
dependent enhancement (4).

The tetravalent vaccine, Dengvaxia, has now been li-
censed in over 20 countries for 9-45 and 9-60 year-old
individuals (5). However, it was discovered that individ-
uals without a previous dengue infection who had been
vaccinated were, in fact, at an increased risk of develop-
ing severe dengue following their first infection (6–7).

This peculiarity led to the WHO Strategic Advisory
Group of Experts (SAGE) recommending either a test-
then-vaccinate strategy, whereby individuals are tested
for a prior dengue infection before getting vaccinated,
or that Dengvaxia only be introduced in regions where
the seroprevalence is at least 50% and, ideally, greater
than 70% (5). In these high transmission settings,
the vaccine is believed to lower the overall burden of
disease while remaining cost-effective; these benefits
drop off where the seroprevalence is less than 50% (8).
Hence, accurate estimates of regional seroprevalence
are crucial for vaccination strategies at the population
level as well as for test-then-vaccinate decisions at the
individual level.

Currently, estimates of seroprevalence are based
on surveys, which use screening tests–primarily the
IgG enzyme-linked immunosorbent assay (ELISA)–to de-
termine prior exposure (11). However, these tests
are currently unable to differentiate between the four
dengue serotypes (9–10). Additionally, the vaccine does
not confer equal protection against all four infecting
serotypes; it only offers significantly higher protection
in two of the four viral strains (8, 12). Therefore, despite
vaccination, protection against the other two is not only
incomplete, but subsequent infection by one of these

serotypes could be regarded as a secondary–and thus
more dangerous–infection in someone who has been
vaccinated (13). Similar to a secondary infection that oc-
curs from natural exposure, this trend is thought to be
due to antibody dependent enhancement (14). We elab-
orate briefly on this phenomenon in the Supplementary
Material.

Additionally, seroprevalence estimates need to con-
sider the sensitivity and specificity of the test, which
must be estimated from available data. Sensitivity and
specificity are estimated, respectively, as the sample
proportion of people with previous exposure who test
positive and the sample proportion of people without
previous exposure who test negative. However, tests
with imperfect sensitivity and specificity are prone to
false positives and false negatives, and hence a gold
standard test is needed to properly identify those who
have truly been previously exposed. There is no easily
accessible gold standard test for dengue that can be ap-
plied at the point of care (15).

Here, we propose the use of latent class models as
an approach to assessing previous dengue exposure in
a population that does not require a gold standard test
by modelling the two main sources of extra uncertainty
from the lack of a gold standard: (i) the uncertainty in
the sensitivity and specificity and (ii) the uncertainty in
the “true” disease prevalence.

Uncertainty in the sensitivity and specificity arises
from external factors such as laboratory technique, sam-
pling season, and the tendency of dengue antibodies
to cross-react with antigens from other closely-related
flaviviruses, and may be additionally perpetuated by bi-
ases arising when diagnostic tests are not adequately
evaluated in clinically relevant populations (spectrum
bias) (16–20). Uncertainty in the seroprevalence, on
the other hand, is perpetuated by sub-optimal screening
tests and is additionally influenced by a lack of standard-
ized reporting procedures and diagnostic criteria (21).
Additionally, if the study population is not representa-
tive of the target population (due to non-random sam-
pling, for example), the seroprevalence may be addition-
ally affected by selection bias (22).

Previous studies have investigated the effect of un-
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certainty on test sensitivity and specificity as well as on
the prevalence from both a theoretical andmore applied
perspective. For example, Imai and Ferguson (2018)
took a simulation-based approach to explore how sero-
prevalence survey design affects estimates of dengue
transmission intensity (23). Implicit in their approach is
the recognition that there is inherent uncertainty about
the prior prevalence, that is, the pre-test probability of
dengue exposure. Likewise, Panngum et al. (2013) uti-
lized Bayesian latent class models to estimate the true
accuracy of dengue diagnostic tests when easily acces-
sible gold standards are unavailable, and similarly, Spey-
broeck et al. (2011) evaluated uncertainty in the test
sensitivity and specificity in multiple diagnostic tests to
estimate malaria prevalence in Peru, Vietnam, and Cam-
bodia (24–25).

In this paper, we demonstrate the simultaneous ef-
fect of uncertainty in both the test sensitivity and speci-
ficity as well the prior dengue prevalence on post-test
estimates of dengue seroprevalence through simula-
tions based on a formal hierarchical latent class model.
Our simulations emphasize the importance of taking
into account these extra sources of uncertainty when
estimating dengue seroprevalence, which can be used
in the absence of a gold standard test. We therefore ad-
vocate the use of latent class models when estimating
the prevalence of dengue. Additionally, this approach is
especially useful in the context of deciding whether or
not to implement the dengue vaccine at a specific loca-
tion and/or time.

2 | METHODS

Let

π = the probability of previous exposure

θSE = the sensitivity of the test

θSP = the specificity of the test

D = the event of a previous exposure

PPV = the positive predictive value of the test

It is well known that

P PV =
θSE × P(D )

θSE × P(D ) + (1 − θSP ) × (1 − P(D ))
(1)

Our goal is to estimate the prevalence of dengue, P(D),
in a given population based on current survey data. Such
an estimate would be directly crucial in determining
whether to vaccinate this population against dengue.
Through equation 1 above, an estimate of P(D) also facil-
itates the estimation of the positive predictive value of a
test, which could drive a decision to vaccinate at the indi-
vidual level based on the outcome of an individual-level
test. Sensitivity, specificity and prevalence (the probabil-
ity of previous exposure) in equation 1 are regarded as la-
tent variables, which cannot be directly observed. First,
probability distributions are assigned to each of these
latent variables to quantify their uncertainty. From a
Bayesian perspective, these distributions are termed
prior distributions because they are proposed before ob-
serving the outcome of the current seroprevalence sur-
vey. Next, these prior distributions are updated to pos-
terior distributions by taking into account the outcomes
of the current seroprevalence survey.

Modelling the extra complexity in equation 1 by as-
signing prior probabilities to the latent variables θSE, θSP
and π , and then updating the PPV in light of the current
data can easily be done in principle, but in practice re-
quires numerical methods such as Markov Chain Monte
Carlo. In this method, an unconditional (prior) proba-
bility is updated to a conditional (posterior) probability
given the current data. We provide a brief overview of
this modeling approach in the Supplementary Material.

3 | PRIOR SPECIFICATION

In these simulations we assume dengue seroprevalence
surveys are conducted using non-serotype specific as-
says, namely an IgG ELISA (9–10). Uniform prior distri-
butions P(t het aSE) and P(θSP) were imposed on the in-
terval (0.8, 0.95) for both the sensitivity and specificity.
The choice of a uniform prior as well as the minimum
and maximum values for this distribution were chosen
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Prevalence Survey Size Prior Means Prior Standard
Deviation

Prior
Prevalence

Sensitivity and
Specificity

0.4 250 0.3 0.1 ~Beta(6, 14) Unif(0.8, 0.95)
0.5 ~Beta(12, 12)

0.6 250 0.5 0.1 ~Beta(12, 12) Unif(0.8, 0.95)
0.7 ~Beta(14, 6)

0.8 250 0.7 0.1 ~Beta(14, 6) Unif(0.8, 0.95)
0.9 ~Beta(7.2, 0.8)

0.8 250 0.7 0.1 ~Beta(14, 6) 1.0
0.9 ~Beta(7.2, 0.8)

0.8 250 0.7 0.1 ~Beta(14, 6) 0.875
0.9 ~Beta(7.2, 0.8)

TABLE 1 Summary of ten simulation scenarios (1, 26–28, 30–34).

according to reasonable values in the literature for an
IgG ELISA (1, 26). While the reported range of values for
the IgG ELISA’s sensitivity and specificity are wider than
this interval suggests–with values as low as 20-50% and
as high as 99%–these were in the minority and most re-
ported values fell inside this range (27–28). The uniform
prior distributions may be regarded as “objective” priors;
they express no particular preference for any values of
θSE and θSP in the range (0.80, 0.95).

A Beta prior distribution was chosen for the latent
prevalence, π , because the Beta distribution has its sup-
port on the interval (0,1) (the range of π) and because
of its flexibility in accommodating a wide range of distri-
butional shapes (29). The Beta distribution depends on
two parameters, α and β , which must be designated to
complete the prior specification. With respect to α and
β , the mean and variance of the Beta distribution is α

α+β

and αβ

(α+β )2 (α+β+1) , respectively. Thus, letting πspec and
σ2
spec denote the mean and variance of the beta distri-

bution, one obtains:

α = πspec

[
πspec (1 − πspec )

σ2
spec

− 1
]

(2)

β = (1 − πspec )
[
πspec (1 − πspec )

σ2
spec

− 1
]

(3)

For each simulation scenario, equations 2 and 3 were
used to find prior values for α and β . Table 1 summarizes

the information for each simulation.

In our specification of these Beta distributions for the
latent (unobservable) prevalence(s), three pairs of possi-
ble means were considered. Our six prior mean specifi-
cations were 0.3 and 0.5, 0.5 and 0.7, and 0.7 and 0.9.
We focused on evaluating the uncertainty in dengue
seroprevalence estimates in settings likely to be consid-
ering implementing the dengue vaccine and, thus, our
simulations ignored low prevalence settings. To com-
plete the models for these prior distributions, standard
deviation of 0.1 was assumed for all. The choice of stan-
dard deviation was conservative, allowing for a wide
range in the mean prior prevalence, since most values
fall within two standard deviations of the respective
prior mean. For example, with a prior mean of 0.5, the
true prevalence is likely between 0.3 and 0.7, which is
consistentwith the variability in prevalence values in the
literature (30–34). Finally, three different prevalences
–0.4, 0.6 and 0.8– were used to simulate data in each of
these settings (30–34).

Thus, for example, with a choice of 0.3 as the prior
mean, 0.4 could be regarded as representing a latent
over-reported prevalence. A choice of 0.5 as the prior
mean, in conjunction with the data generating preva-
lence of 0.4, would represent a situation in which 0.4
represents a latent underreported prevalence. Likewise,
for the other triplets, (0.5, 0.7 and 0.6) and (0.7, 0.9
and 0.8), underreporting would occur, primarily because
of asymptomatic or mild dengue cases where individ-
uals do not seek medical care, or due to underdevel-
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oped surveillance and reporting infrastructures (35–37).
Overreporting, in contrast, may arise due to an ex-
cessive number of false positives resulting from ELISA
cross-reactivity in patients with acute Zika infections,
those previously vaccinated against Yellow Fever as well
as other flavivirus infections such as Japanese encephali-
tis, especially in Southeast Asia (19, 38–39). While the
underestimation of seroprevalence is likely to trump in-
stances of false positive inflation, the number of false
positives due to cross-reactivity is not negligible and is
particularly relevant for areas with a high degree of co-
circulating flaviviruses such as South America and parts
of Southeast Asia.

4 | SIMULATIONS OF THE POS-
TERIOR DISTRIBUTION OF THE
PREVALENCE

To simulate the posterior distribution of the prevalence,
data was first generated to represent individual tests
where the probability of testing positive was set to the
prevalence for that simulation; i.e. one of 0.40, 0.60, or
0.80. Hence, each test resulted in an outcome for a sin-
gle individual, which was 1 if positive and 0 if negative.
Taking a sample size of 250, this process was repeated
50 times for each prevalence setting. A sample size of
250 was chosen as a reasonable size to model local sur-
veys where the prevalence is likely to change over time,
in contrast to larger surveys which are more expensive
to conduct, undertaken less often, and are unlikely to
reflect local prevalence conditions (9, 40). Additionally,
a sample size of 250 is within the reasonable range of
previously conducted dengue serosurveys at the local
scale (41–44). The relatively low (50) number of repe-
titions for each simulation was done for computational
purposes, and is not thought to hamper the results or
conclusions.

The posterior distribution of the prevalence for each
dataset was then simulated using a Markov Chain
Monte Carlo algorithm from the statistical software
package R. The posterior distribution computations
were repeated for 50 different data sets to investigate

the potential variability in inference that could result
from data collected from different studies. In each of
the six simulation scenarios outlined in Table 1, a cloud
of posterior probability density functions (pdfs) was pro-
duced and plotted along with the corresponding prior
pdf. Table 1 provides a summary of the model specifi-
cations. For comparison, we also computed (i) the aver-
age of the posterior means of the prevalence under the
(unrealistic) assumption of a test with perfect sensitiv-
ity and specificity, and (ii) the average of the posterior
means of the prevalence under the assumption of a test
with less-than-perfect, but known sensitivity and speci-
ficity of 0.875. This comparison was restricted to sce-
narios in which the probability of testing positive was
0.8 and the prior prevalence was either 0.7 or 0.9.

Figure 1 shows a diagram of our modelling sequence.

F IGURE 1 Modelling sequence. The primary goal
here was to determine P(π | Survey Data)

5 | RESULTS

Figure 2 provides a graphical display of the results of
our simulations, assuming the prevalence, test sensitiv-
ity and test specificity are unobservable latent variables.
Table 1 gives the specifications for these simulations and
Table 2 provides a numerical summary of the results.

Figure 2 A(i)–F(i) depicts the prior probability density
function (pdf) (dashed line) assumed for that simulation,
along with a smooth line fitted to the histogram of 50
simulated data prevalences (solid line). The precise prior
pdfs, and underlying prevalences used to simulate the
data are described in the legend. Figure 2 A(ii)–F(ii) dis-
plays the 50 corresponding posterior pdfs, one for each
simulated data prevalence.Also partially displayed is the
prior pdf (dashed line) assumed for the calculation of the
posterior pdf.
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F IGURE 2 (A–F) from left to right: (i) shows density
of the proportion of individuals who test positive for
each simulated survey and (ii) shows the cloud of
posterior densities, one for each simulated survey. The
dashed curve in each, represents the prior probability
density function assumed for that case. The prevalence
used to simulate the current data in A(i–ii) and B(i–ii)
was 0.4. The mean of the prior density in A(i–ii) was
0.3 while the mean of the prior density in B(i–ii) was
0.5. The prevalence used to simulate the current data
in C(i-ii) and D(i-ii) was 0.6. The mean of the prior
density in C(i-ii) was 0.5 and the mean of the prior
distribution in D(i-ii) was 0.7. The prevalence used to
simulate the current data in E(i–ii) and F(i-ii) was 0.8.
The mean of the prior density in E(i-ii) was 0.7, while
the mean of the prior density in F(i-ii) was 0.9. The
standard deviation for all prior densities was 0.1.

Figures 2 A(ii)–F(ii) demonstrate two sources of un-
certainty in our estimates of the prevalence of dengue,
π . First, each posterior probability density function (pdf)
in the cloud shows the range of plausible values for
π given the most recent observed data. This range is
roughly 0.2 across all pdfs. A priori, a range of 0.4 was
assumed by supposing that the standard deviation of π

was 0.1; the 50 percent reduction in our initial uncer-
tainty about the prevalence was due to the influence of
the most recent data, used to update our prior beliefs
about π .

A second source of variability captured by Figures
2 A(ii)–F(ii) is the variability in the mean of the poste-
rior pdfs in the cloud. Table 2 shows that the sample
standard deviation of the 50 posterior means ranges be-
tween 0.020 and 0.038. This means that in the “best”
case if the posterior mean prevalence was used to esti-
mate , it could be under or overestimated it by as much
as 0.04 (i.e. two standard deviations) depending on the
most recent data used to update our prior distribution.

6 | DISCUSSION

Here, we have proposed an approach to estimating the
probability of previous exposure to dengue in a pop-
ulation when there is no easily accessible gold stan-
dard test. Specifically, the results of these simulations
demonstrate the necessity to build into such amodel the
inherent uncertainty in the region-specific prevalence
of dengue, as well as the uncertainty in the sensitivity
and specificity of the test, in this case, the IgG enzyme-
linked immunosorbent assays (ELISA).

Previous work has shown that implementing the
dengue vaccine in high prevalence settings (≥50-70%
seropositive) may lower the burden of dengue in these
areas (8). Indeed, in individuals with a previous dengue
exposure, the vaccine has been shown to be effective
in protecting against secondary infections (7). However,
caremust be takenwhen decidingwhether or not to vac-
cinate against dengue. By taking into consideration ex-
tra sources of uncertainty in current seroprevalence esti-
mates, regions considering vaccine implementation are
likely tomakemore informed decisions and can addition-
ally update their uncertainty in light of new seropreva-
lence surveys and/or diagnostic test improvements. Our
approach additionally emphasizes the care that must
be taken when interpreting prevalence estimates in the
face of an uncertain (and unobservable) true prevalence.

For example, consider a regional population of 1 mil-
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Prevalence Prior Standard Deviation Prior Prevalence Sensitivity and Specificity
0.3 0.4 0.349 0.033
0.5 0.402 0.030
0.5 0.6 0.594 0.035
0.7 0.646 0.038
0.7 0.8 0.837 0.020
0.9 0.922 0.021

0.7* 0.8 0.794 0.023

0.7‡ 0.868 0.025

0.9* 0.8 0.804 0.024

0.9‡ 0.908 0.032

TABLE 2 Summary of simulations for each prevalence setting.
(*) denotes sensitivity and specificity equal to 1.0, (‡) sensitivity and specificity 0.875.

lion people. A point estimate of an infection prevalence
of 0.35 (that is 35,000 per 100,000) would translate to
350,000 infected individuals in the population of 1 mil-
lion. However, this could be an underestimate or overes-
timate of the number of previously infected by as much
as 76,000. Even if 76,000 is an upper bound in terms of
assessing uncertainty, the effects are likely to be large
from both a public health and personal risk perspective
in deciding whether to vaccinate against dengue. In
such circumstances, large and carefully designed studies
that yield high-quality data are particularly important.

Other studies have advocated for the use of more dy-
namic measures of disease risk–such as the force of in-
fection–to inform vaccine decisions (23). This is largely
due to the considerable spatial and temporal variation
exhibited in dengue transmission as well as sampling
variability (23). Presently, however, decisions to imple-
ment the dengue vaccine are ultimately based on sero-
prevalence estimates obtained from surveys (11). We
have, however, attempted to address these issues in the
choice of a relatively small sample size (250) for our sim-
ulated data sets since these are likely to be more rep-
resentative of local surveys and prevalence conditions
(9,40).

Our analysis is not without limitations. Latent class
models require the specification of prior distributions
and inference can sometimes depend strongly on the
choice of these prior distributions. We have, however,
attempted to ameliorate this potential issue by choos-
ing a Beta prior distribution for prevalence–a distribu-

tion commonly used because of its flexibility whenmod-
elling the prior distribution of an unknown parameter
constrained to lie between 0 and 1. Further, in our
simulations our parameter choices for the Beta prior
were based on data obtained from the dengue litera-
ture, making sure to include a wide range of parame-
ter values. Without any guidance from the literature on
the distribution of the latent variables for the test sen-
sitivity and specificity apart from their ranges, uniform
prior distributions (that is, objective priors) were chosen
to reflect this limitation. Additionally, a criticism some-
times levelled against latent class models concerns the
assumption of conditional independence between the
outcomes of different diagnostic tests (45). However,
this issue does not arise in our setting, as just one di-
agnostic test based on the IgG ELISA was considered.
When several diagnostic tests are combined however,
their conditional dependence would need to be mod-
elled. A less formal approach to combining two or more
tests entails the use of composite reference standards
(46).

Further, it was assumed that the initial prevalence,
representing the probability of a positive test result in
each trial for which the data was generated, was fixed.
While this assumption may be reasonable for endemic
settings where a relatively constant level of dengue is
observed, areas that experience spurious epidemicsmay
have seroprevalences that fluctuate (23, 47).

Nevertheless, these simulations provide a meaning-
ful insight into how estimates for a population sero-
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prevalence are influenced by taking into account two
ubiquitous sources of uncertainty in circumstances
where no readily available gold standard test exists. Ad-
ditionally, this framework may easily be applied more
broadly to other infectious diseases.
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7 | SUPPLEMENTARY MATERIAL

7.1 | Antibody-Dependent
Enhancement

Consistent with the majority of viral infections, follow-
ing a primary dengue infection, the body first produces
IgM antibodies as part of the body’s non-specific re-
sponse, which activates the production of IgG antibod-
ies (1). IgG antibodies can then bind to viral antigens and
deliver the virus to macrophages (2). After the dengue
virus is cleared from the body, immune cells become dor-
mant. In the event of a second infection with a heterol-
ogous viral serotype, immune cells become activated
and immediately release the anti-dengue IgG antibod-
ies (2,3). Because all four dengue serotypes are related,
the IgG antibodies are able to bind to the new dengue
antigen, but because it is not the same virus that caused
the first infection, the antibodies cannot deactivate the
most virulent part of the virus (2,3). When the virus is
subsequently delivered to macrophages, it is able to hi-
jack the macrophages’ cellular processes and use its re-
sources to multiply, resulting in viremia with viral loads
sometimes 1000 times those of primary infections (2, 3).
This phenomenon is known as antibody-dependent en-
hancement.

The dengue vaccine is thought to act as a primary in-
fection in some dengue-naïve individuals (4). Thus, if
and when those individuals are exposed to one of the
four dengue serotypes, they become vulnerable to this
phenomenon and, subsequently, to a severe dengue in-
fection (that is, dengue hemorrhagic fever and dengue
shock syndrome).

7.2 | Model Specification

Even though the sensitivity and specificity are parame-
ters characteristic of a diagnostic test and the seropreva-
lence is also a parameter–determined by many different
factors–their true values are unknown. In latent class
models, the uncertainty in such parameters is modelled
by assigning them probability distributions, known as
prior distributions. Once the current data are observed,

these prior distributions are updated to posterior distri-
butions using Bayes’ Theorem. The post-data output is
therefore not a point estimate of each parameter, but
rather a full distribution of possible parameter values,
reflecting our updated uncertainty in each parameter.
Nevertheless, as a “point estimate”, one may choose a
representative of the posterior distribution; commonly
its mean or mode. Gross misspecification of the prior
distribution, however, is likely to lead to biased (poste-
rior) estimation of the unknown parameters by the pos-
terior mean. For this reason, the prior should be chosen
with care. Posterior credibility intervals play the role of
confidence intervals; a 100(1–α )% posterior credibility
interval for a given parameter has the property that with
posterior probability (1–α ) the given parameter falls in
this interval.

We do not display a single posterior distribution ob-
tained from a single data but rather, for each sero-
prevalence setting, we generated 50 data sets, and, for
each, we display a cloud of 50 posterior distributions
for dengue prevalence. We did this to investigate the
variability in posterior distributions that may result from
different seroprevalence surveys.

We do not provide the posterior distributions of the
test sensitivity and specificity since the focus is on the
prevalence of dengue rather than the properties of the
test; that is, sensitivity and specificity. However, these
posterior distributions are needed in order to derive the
posterior distribution of the dengue seroprevalence.

Further, we did not compute posterior credibility in-
tervals because there is no suitable way to summarize
50 intervals from 50 different data sets. In practice, an
analyst working with a single data set would present
their posterior credibility interval.

Figure S1 shows the variability in the seroprevalence
posteriormeans as a function of 50 observed data preva-
lences. Each posterior mean may be used as a sum-
mary of the posterior distribution obtained from its cor-
responding observed data prevalence. Hence, the pos-
terior mean could be regarded, in each case, as a point
estimate of the “true” prevalence.
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F IGURE S1 For each, dots represent individual simulation posterior means for the seroprevalence; the solid line
represents the average of posterior means for each simulation setting; and the dashed lines represent 2 standard
deviations above and below this average. (a) seroprevalence used to simulate the data was 0.4, prior mean was 0.3;
(b) seroprevalence used to simulate the data was 0.4, prior mean was 0.5; (c) seroprevalence used to simulate the
data was 0.6, prior mean was 0.5; (d) seroprevalence used to simulate the data was 0.6, prior mean was 0.7; (e)
seroprevalence used to simulate the data was 0.8, prior mean was 0.7; and (f) seroprevalence used to simulate the
data was 0.8, prior mean was 0.9.

F IGURE S2 For each, dots represent individual simulation posterior means for the seroprevalence (equal to 0.8
in all); the solid line represents the average of posterior means for each simulation setting; and the dashed lines
represent 2 standard deviations above and below this average. (a) prior mean was 0.7, sensitivity and specificity
fixed and equal to 1.0; (b) prior mean was 0.9, sensitivity and specificity fixed and equal to 1.0; (c) prior mean was
0.7, sensitivity and specificity fixed and equal to 0.875; (d) prior mean was 0.9, sensitivity and specificity fixed and
equal to 0.875.
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