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solid organ pancreas transplantation address the deficit
in β-cell mass that underlies diabetes, but these
therapies are of limited clinical utility due to the
shortage of donor organs and the side effects inherent to
the immunosuppression that allo-grafts require.
However, recent research suggests that the human
pancreas may possess a significant regenerative
capacity. Hence, new therapeutic strategies seek to
harness this regeneration to re-establish a functional β-
cell mass that is sufficient to normalize glycemia and
reverse diabetes.

Type 1 Diabetes Mellitus

While the exact nature of the insult remains to be
elucidated, T1DM is characterized by the destruction of
pancreatic β-cells due to T-cell-mediated auto-immune
attack (3). Clinical onset is associated with a residual β-
cell mass comprising approximately 20% that of age-
matched non-diabetic individuals (4). It is at this point
that the remaining β-cell mass is incapable of
maintaining normoglycemia, and persistent
hyperglycemia occurs.

Thus, the current treatment for T1DM consists of
insulin replacement, either by the administration of

INTRODUCTION 

Diabetes mellitus afflicts approximately 8% of
Canadians, with an increasing incidence and prevalence
(1, 2). Most will go on to develop complications,
including cardiovascular disease, nephropathy,
neuropathy and retinopathy, contributing to over $10
billion per year in health-related costs (2).

While the etiologies differ between type 1 (T1DM)
and type 2 diabetes (T2DM), both forms are
characterized by a relative deficit in functional β-cell
mass such that the insulin requirements of the body are
not met and glycemia is uncontrolled. Thus, current
therapies treat the symptoms of diabetes by normalizing
glycemia, either by improving the insulin secretory
output of the remaining β-cells (insulin secretagogues),
improving the response to insulin at target tissues
(insulin sensitizers), or replacing the missing insulin
(exogenous insulin). As it stands, only isolated islet and
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glucose challenge are decreased in T2DM (22-25).
Thus, a normal β-cell mass may not necessarily
correlate with normal glucose tolerance (26),
suggesting that the β-cell deficit in T2DM may be
functional, as opposed to absolute (4, 27-34).

It is for these reasons that the current pharmaceutical
options for the management of T2DM fall into two
broad categories; those of insulin secretagogues –
compounds that increase the insulin secretory response
of the β-cell – and insulin sensitizers – compounds that
potentiate the effect of insulin at its target tissues. While
these medications are certainly useful in the
management of the disease, the fact remains that a
significant proportion of patients with T2DM
eventually require exogenous insulin due to the
progressive loss of β-cell function and increase in
insulin resistance. 

However, recent data now suggests that T2DM is also
characterized by an absolute deficit in β-cell mass (35,
36). In fact, a step-wise decline in β-cell mass is
observed over the progression from normoglycemia to
impaired fasting glucose to overt diabetes (35). With
respect to the mechanism of this loss of β-cell mass, it
would appear that the rate of β-cell apoptosis is
increased in T2DM, while the rate of β-cell formation is
unchanged (35). Moreover, it seems that the
hyperglycemic hyperlipidemic environment that is
found in T2DM is directly toxic to pancreatic β-cells
(37, 38), further propagating this cycle (39-41). Thus,
interventions designed to either slow the rate of β-cell
apoptosis, or stimulate the formation of new β-cells
may be of clinical utility in the management of T2DM.

β-Cell Mass

Pancreatic β-cell mass is not a static entity, but rather
is in constant flux, and as such can adapt to the
prevailing physiologic needs (42, 43). For example,
insulin resistance associated with pregnancy (44) or
obesity (4, 35, 45) leads to as much as a doubling of β-
cell mass. Conversely, a deficit in β-cell mass is
associated with diabetes (9, 35).

Changes in β-cell mass over time reflect the net effect
of diametrically opposed pathways; those that serve to
increase β-cell mass, and those that serve to decrease it.
Possible β-cell mass expansion pathways include β-cell
hypertrophy and replication, as well as the formation of
new β-cells from non-β-cell sources – neogenesis. Each
of these factors has an equivalent opposing force; β-cell
atrophy and death, via apoptosis or necrosis, as well as
β-cell dedifferentiation, all serve to decrease β-cell
mass. However, studies suggest that the three main
mechanisms at play in controlling β-cell mass dynamics
are β-cell replication, neogenesis and death (35, 46, 47).

Based on these observations, Finegood et al. (42)

exogenous insulin in a manner that seeks to mimic the
secretory response of β-cells, or by the replacement of
the missing β-cell mass by the transplantation of solid-
organ pancreas or isolated islets allo-grafts.
Unfortunately, while exogenous insulin administration
may delay or slow the development of diabetic
complications, this treatment cannot prevent their
occurrence (5, 6). Conversely, solid organ pancreas
transplant represents the only available means of
providing long-term glycemic control that prevents, and
even, reverses diabetic complications (7), by way of re-
establishing an appropriately functional β-cell mass.
However, life-long immunosuppression, with all the
associated side effects, along with the limited
availability of cadaveric donor organs, limits any
transplantation-based approach. With respect to islet
transplantation, it was hypothesized that the islets
isolated from one donor organ could be used to treat
several recipients, given that overt diabetes is only
observed when there is a ≥50% reduction in β-cell mass
(4). However, the attrition associated with the isolation
process results in several donor organs being required
per individual recipient, while the average duration of
graft function reaching only 15 months in islet
recipients (8), as compared to ten years in pancreas
recipients (7). Thus, none of the currently available
treatments is ideal.

While it stands to reason that the auto-immune attack
responsible for T1DM would eventually result in a
complete loss of β-cell mass, recent case reports of
elderly individuals with long-standing T1DM indicate
ongoing β-cell apoptosis (9, 10), suggesting that
attempts at β-cell regeneration within the native
pancreas may persist throughout the duration of the
disease. The rate of such regenerative mechanisms is
obviously eclipsed by the rate of β-cell death in
individuals with T1DM, but this observation does
suggest nonetheless that the manipulation of rates of β-
cell formation and death could be a possible therapeutic
target in diabetes.

Type 2 Diabetes Mellitus

T2DM accounts for the vast majority of cases of
diabetes, and is a heterogeneous disease marked by β-
cell dysfunction (11, 12) combined with insulin
resistance in target tissues (11, 13, 14). The
pathogenesis of the disease involves both genetic (15)
and environmental factors, and is frequently associated
with obesity (13, 16-18). 

With respect to β-cell dysfunction, clinical studies
have highlighted the impaired first-phase insulin
secretion that is common in T2DM (19-21). Moreover,
in vitro studies of isolated human islets indicate that
insulin content and the insulin secretory response to a
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highly controversial (53, 54). The two principal
mechanisms of increasing β-cell mass are replication –
the formation of β-cells by the division of pre-existing
β-cells – and neogenesis – the formation of β-cells from
non-β-cell precursors (55-59).

β-Cell Replication

While the adult β-cell turnover rate is low (60), in vivo

and in vitro studies have determined that β-cells
proliferate in response to physiologic concentrations of
relevant growth factors (61-68). Recent evidence
suggests that β-cell proliferation may function as a
compensatory mechanism in T2DM (35, 46), although
proliferating β-cells are also more susceptible to
apoptosis (69, 70). Thus, β-cell replication is a real,
semi-quantifiable component of β-cell mass dynamics,
both in the normal and diseased pancreas. However,
unbridled cell proliferation is a hallmark of cancer, and
as such care must be taken to ensure a physiologic, self-
limiting level of proliferation.

β-Cell Neogenesis

Although β-cell replication and neogenesis are
dynamic processes, the availability of detectable
markers of cellular proliferation (71, 72) renders the
quantification of cell replication much more
straightforward than the measurement of neogenesis.
Recent advances in lineage tracing techniques have
facilitated the process, but questions regarding the
cell(s) of origin and inter-species differences mean that
neogenesis is still a polarizing subject. 

Neogenesis implies that β-cells form from non-β-cell
precursors (56-58), though the source and location of
such precursors is not specified. Thus, the term
neogenesis could be applied to the formation of β-cells
from intra- or extra-pancreatic stem cells, as well as the
direct or indirect transdifferentiation of other adult cell
types. Regardless of the exact nature of the cell(s) of
origin, neogenesis represents a means of expanding
pancreatic β-cell mass.

Regenerative Factors

A variety of animal models have been developed to
study the mechanisms of islet regeneration, and identify
the factors involved. These models include partial
pancreatic duct obstruction (57, 73) or ligation (74, 75),
partial pancreatectomy (58, 76), chronic and acute
glucose infusion (77-79), administration of a β-cell-
specific toxin (80) and transgenic models (81-83), all of
which are associated with an endogenous pancreatic
regenerative response. As such, researchers have
screened the regenerating pancreas to identify factors
that may regulate the response, as well as general
changes in gene expression (84, 85). 

proposed a simple mass-balance equation to follow the
prevailing trends in β-cell mass: 

d(β-cell mass)/dt = rate β-cell replication + rate β-cell
neogenesis – rate β-cell death.

While β-cell mass is highly dynamic, and represents
the sum of several processes, the methods for
estimating overall β-cell mass and the rates of change
are static. Moreover, no current technology exists to
accurately assess these parameters in situ. Thus, studies
of β-cell mass in humans are limited to autopsy cases
and cadaveric donor organs, with rates of changes
presented as relative, rather than absolute values (35,
36). Nevertheless, these studies provide indications of
these mechanisms in non-diabetic humans, and suggest
the effects of diabetes on the mechanisms that control β-
cell mass. 

As indicated earlier, human diabetes is marked by a
deficit in functional β-cell mass. While patients
suffering from T1DM have a virtual lack of β-cell mass
(4), chronic β-cell apoptosis in individuals with T1DM
suggests β-cell neogenesis is also ongoing (9, 10).
Recent evidence also indicates that increased β-cell
apoptosis also leads to a deficit in β-cell mass in T2DM
(35). This increased β-cell apoptosis is observed in both
lean and obese cases of T2DM, while obese T2DM
individuals do show evidence of increased neogenesis
and lean T2DM individuals have increased β-cell
proliferation indices, suggesting compensatory
mechanisms are intact, but outpaced by β-cell apoptosis
(35). Thus, these findings suggest that regenerative
mechanisms do exist within the human pancreas, and it
may be possible to manipulate the rates of the various
components to affect overall β-cell mass.

Limiting  β-Cell Loss

The mechanisms responsible for depleting β-cell
mass are well defined, and are predominated by β-cell
death (35, 42), either in the form of apoptosis or
necrosis. Increased β-cell death is common to both
T1DM (3) and T2DM (35), however efforts at
controlling this aspect of β-cell mass have been limited.
While the auto-immune nature of T1DM suggests that
attenuation of the immune response may help to
preserve β-cell mass, results of clinical trials have not
supported this therapeutic avenue (48). Likewise, while
inhibition of β-cell apoptosis would likely be a useful
therapy in T2DM, few agents have any specificity for
pancreatic β-cells (49-52), and systemic administration
of a generic anti-apoptotic agent is simply unfeasible.

Inducing β-Cell Expansion

The mechanisms of increasing β-cell mass are still
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reports of GLP-1-mediated islet neogenesis (64, 109,
112, 113, 115), recent statements by researchers
examining the in vivo effects of GLP-1 call into
question a neogenic response (116-120). Nevertheless,
GLP-1 certainly has a role to play in the evolving
treatment of diabetes, if not as a neogenic factor then at
least with its capacity to act as a β-cell mitogen and
anti-apoptotic supplementing its activity as an incretin.

Reg Proteins

Given that subtotal pancreatectomy combined with
poly(ADP-ribose) polymerase inhibitor treatment
promotes islet regeneration (121), researchers screening
a cDNA library generated from the regenerating islets
identified a novel protein, termed regenerating protein
(Reg, now known as RegI) (122). It was later
determined that while some Reg proteins are expressed
in regenerating islets (123), expression is primarily at
acinar tissue (124).

Reg proteins have been postulated to play a role in
inhibition of pancreatic stone formation (125), bacterial
aggregation (126), regulation of inflammation (127,
128) and cellular adhesion to extracellular matrix
components (129), among others. Most interestingly,
however, in vivo studies suggest that administration of
RegI may be sufficient to induce pancreatic
regeneration in both surgically-induced (62) and
genetic (130-133) models of diabetes. Moreover, RegI-
overexpressing mice have increased islet proliferation,
and crossing unto a genetic background of diabetes
(NOD) delays the onset of diabetes and increases β-cell
mass (134). RegI-/- animals are not overtly diseased,
although islet proliferation is reduced (134). Reg
proteins are mitogenic to islet and ductal cell lines, as
well as isolated islets and primary duct cultures (135-
137), and may also have anti-apoptotic effects (128,
138).

While the exact Reg mechanism of action and
signalling pathways are still contentious (139), it is
noteworthy that Reg expression or activity has been
associated with other putative regenerative factors. For
example, administration of a GLP-1 analogue
upregulates pancreatic Reg expression prior to
observation of islet regeneration (85), while the effects
of gastrin may be mediated by Reg expression (140,
141).

Thus, while results are promising, Reg proteins, with
the exception of one, have not elicited much clinical
interest.

Islet Neogenesis-Associated Protein

The Reg proteins can be divided into three general
families; RegI, RegIII and Reg IV (142). The RegIII
subfamily is characterized by the presence of a five

Several novel therapeutics have been developed
based on these studies, all of which are currently in
clinical trials as novel therapies for diabetes.

Gastrin and Epidermal Growth Factor

Studies of the pancreatic regenerative response to
pancreatic duct ligation (74) noted the upregulation of
gastrin and transforming growth factor-β, a member of
the epidermal growth factor (EGF) family of ligands
(75). Subsequent studies indicated that alone, these
factors acted mainly as duct cell mitogens (86-88),
whereas co-administration or generation of double
transgenic animals led to a significant increase in β-cell
mass (82, 89, 90). It now appears that the role of EGF
ligands may be to generate metaplastic duct-like
structures derived from acinar tissue (91, 92), which
then go on to form islets in response to gastrin (93).  

In vitro studies suggest that human tissue can be
expanded and differentiated in the same way (94-96).
There is also pathologic evidence for such an islet
regenerative effect of gastrin, as Zollinger-Ellison
syndrome – hypergastrinemia secondary to a
gastrinoma – is associated with increased islet
neogenesis and replication (97, 98). 

Based on the above studies, combination therapy with
gastrin and EGF analogues is currently in clinical trials
(99), although due to the established carcinogenicity of
EGF, more recent trials focus on gastrin and glucagon-
like peptide-1 (GLP-1) co-administration (100).
Nonetheless, preliminary data from phase IIa clinical
trials indicate that EGF and GLP-1 analogue co-
administration improve glycemic control, as reflected
by HbA1c, fasting glucose and glucose tolerance (101).
While clinically important and suggestive of
mechanism, these outcomes do not necessarily indicate
an increase in endogenous β-cell mass.

Glucagon-like Peptide-1

GLP-1 is a product of alternative post-translational
modification of preproglucagon (102). While β-cells
produce and secrete glucagon, enteroendocrine L-cells
of the intestine produce GLP-1 (103). Due to their
incretin and other effects (104), long-acting GLP-1
analogues (105) and dipeptidyl peptidase-IV inhibitors
(106) are already available for the treatment of T2DM.
Additionally, however, GLP-1 has been implicated in
islet regeneration (64, 107-113), leading to its study as
a regenerative factor.

Data regarding the regenerative role of GLP-1 and
related agonists are controversial. There is strong
evidence to suggest that GLP-1 receptor activation can
protect β-cells from apoptosis (49-52). There is equally
convincing evidence of a β-cell mitogenic effect of
GLP-1 (49, 64, 108, 114). However, while there are
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CONClUSION 

While the therapies currently available for the
management of diabetes are relatively successful at
controlling the symptoms of this disease, the fact
remains that the underlying cause of these symptoms
goes unaddressed. Thus, the majority of patients with
diabetes will develop secondary complications of the
disease resulting in shortened lifespan and reduced
quality of life. Recent insights into the etiology of
diabetes have offered a suggestion as to new therapeutic
opportunities for the treatment of diabetes, namely the
re-establishment of a functional β-cell mass that is
sufficient for glycemic control. Thus, new therapies are
being designed and tested that seek to re-establish a
significant population of functional β-cells in the
endogenous pancreas, either by inhibiting the
destruction of pre-existing β-cells, or inducing the
formation of new β-cells. However, any therapy that
seeks to manipulate the balance between cell death and
survival, and differentiation and proliferation, also
carries with it the risk of carcinogenicity. This risk is of
particular concern given that the clinical interest in
these novel therapies is not necessarily reflective of our
level of understanding of the mechanisms of control of
β-cell mass dynamics. However, given the inherent
ability of the body to manipulate β-cell mass in
response to specific metabolic conditions (4, 35, 42-
45), and a recent report that suggests that the body’s
ability to regulate β-cell mass remains intact even in the
context of external manipulation (47), it would appear
that therapies designed at re-establishing a functional
endogenous β-cell mass possess a significant potential
as novel therapies for diabetes.
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