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Introduction
Brain-Computer Interface (BCI)

BCIs are a means of directly connecting brain activity to computer interfaces, allowing
individuals to communicate or control computers without having to interact with them
through physical movements. BCIs are typically used as communication and control
systems (2), predominantly targeted at individuals with minimal communicative abilities
due to motor impairments, such as amyotrophic lateral sclerosis (ALS) and muscular
dystrophy (2). They have been linked to multiple neuroimaging methods such as
electroencephalogram (EEG), magnetoencephalography (MEG), electrocorticography
(ECoG), intracortical recording, functional magnetic resonance imaging (fMRI) and
near-infrared spectroscopy (NIRS) (3). BCIs using EEG records neurophysiological
signals from the brain and translates them into meaningful interactions with the
external environment, such as controlling technological devices (4).

Many BCI systems are based upon endogenous brain responses to external stimuli,
such as flashing lights (e.g. visual-evoked potential BCIs) or oddball stimuli (e.g. P300-
based BCIs). The usability of these systems is high; approximately three-quarters of
subjects trained on a P300-based BCI were able to gain a functional use of the system
(5).

In contrast, sensorimotor rhythm (SMR)-based BCI systems are based upon user-
driven changes in the event-related desynchronization (ERD) and event-related
synchronization (ERS) in the sensorimotor brain area. ERD is the decrease in the
synchrony of the neurons and ERS is the increase in the synchrony of the neurons (7).
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Brain-computer interfaces (BCI) are systems which enable direct communication
between a brain and an external device by translating electrical brain activity into
meaningful output. The motor learning period is the time it requires for an individual to
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At rest, this brain area produces a characteristic rhythm between 8-12 Hz – often
known as the mu-rhythm – through ERS (6). When an individual moves, an ERD is
produced, thereby decreasing the amplitude of the mu-rhythm (7). Motor imagery --
imagining a specific movement or sequence of movements, without performing the
task itself (8) -- can also produce an ERD (9),(7),(6). SMR-based BCIs track the
change in the power of the mu-rhythm and translate this into an interface command,
typically the left-right movement of cursor on a computer screen. Controlling a SMR-
based BCI requires users to generate ERD and ERS on command (10),(11).

Transcranial Direct Current Stimulation

Anodal high-definition transcranial direct current stimulation (HD-tDCS) is a non-
invasive brain stimulation technology used to modulate the excitability of the brain
using weak electric polarizing currents of 1-2mA (12). HD-tDCS has high spatial
resolution and focalization (13) The effect of tDCS on cortical excitability have been
shown to last up to 90 minutes in humans (14). This technology is also a relatively
inexpensive tool that can be used at home once the system has been calibrated (15).
tDCS is currently being used as a therapeutic treatment of conditions such as stroke,
Parkinson s̓ disease, chronic pain conditions, anorexia nervosa, depression (16),(17),
(18),(19),(20). In the context of stroke, the application of tDCS over the somatosensory
area has been shown to increase accuracy in SMR-BCI tasks (21),(12) as well as the
ERD of the mu rhythm (1). tDCS has also been shown to improve the ability to perform
motor imagery in both healthy and patient populations (21), (22), (23). In these
individuals, tDCS applied to either the primary motor cortex (M1) or the dorsolateral
pre-frontal cortex was shown to improve the non-dominant hand writing time and
legibility through practice of motor imagery tasks when compared to sham stimulation
(24).

The objective of this study was to determine whether anodal tDCS applied to the
sensorimotor area over ten training days could improve the speed at which individuals
learned a BCI task, in comparison to a sham tDCS group. Our hypothesis was that
anodal tDCS over the sensorimotor area would improve an individual s̓ ability to
perform motor imagery, as measured by the change in accuracy of the BCI task.
Additionally, we hypothesized that the experimental group would show a greater
difference in EDS-ERD amplitude compared to the control group.

Methods
Subjects

Nine control participants, 6 females, 3 males, mean age = 24.7 ± 7.1 years and nine
experimental participants, 5 females, 4 males, 23.4 ± 3.0 years (sex/gender: p = 0.629;
age: p = 0.315) were recruited through posters on Facebook pages. Participants were
included if they were: 1) healthy individuals between the ages of 18 and 50; 2) right-
handed; and 3) naïve to the BCI task used in the experiment. Participants were
excluded if they: 1) had any clinical condition (e.g. ADHD) and/or were taking
medications affecting the nervous system and/or the ability to learn; and 2) had any
contraindications regarding tDCS (e.g. metal cranial implants).

Study Design

A pre-post single-blind design was used in this study. Participants attended 10 BCI
training sessions over a 2-week period, with sessions divided into 2 periods of 5
consecutive days (Figure 1). On the first visit, subjects completed an Information and
Consent Form, Safety Questionnaire for tDCS, and a Sleep and Activity Questionnaire.



Participants were assigned to the control or experimental group, ensuring that both
groups were similar in age and gender. To deliver the tDCS stimulation and record EEG
data, a 128 EEG channel electrode net (Electrical Geodesics Inc., Eugene, Oregon,
USA) in combination with a Geodesic Transcranial Electrical Neuromodulation (GTEN)
system (Electrical Geodesics Inc., Eugene, Oregon, USA) was used. Prior to each
session, electrode impedances were reduced to below 50 kΩ. In addition, six cathodal
and six anodal channels over the left and right hemispheres respectively were
selected, thus allowing for a high density tDCS targeted system. Subsequently, the
SMR-based BCI was calibrated by asking participants to rest for 1 second, and then to
imagine squeezing their right hand. This was done every experimental session. The
electrode over the left somatosensory cortex that showed the greatest amplitude
difference between ERD and ERS was selected for the remainder of the experiment.
During the experiment, participants received 22.5 minutes of sham tDCS (control
group) or anodal tDCS (experimental group), and then completed the BCI task. Upon
completion of the BCI task on the first day, participants from both groups were
familiarized with the sensation of the tDCS for 3.5 minutes. In sessions 2-10, for every
session, the electrode over the left somatosensory cortex that showed the greatest
amplitude difference between ERD and ERS was selected. At the end of each session,
3D electrode locations were recorded using a dual-axis camera (Electrical Geodesics
Inc) to ensure similar electrode net placement across sessions.

Figure 1. Flowchart outlining the study design. 18 right-handed healthy subjects were
recruited. They were randomized into two groups, the tDCS and the sham group. The tDCS
group underwent the stimulation protocol while the sham group did not receive stimulation and
rested for the same amount of time. Once the stimulation period or the rest period terminated,
the subjects completed the BCI tasks followed by the scanning of electrodes position.

BCI Task

Participants were asked to control a small white ball (Figure 2), which appeared at the
beginning of each trial at the top-center of their screen, and dropped to the bottom in
approximately 9 seconds. Targets covering the left-half or the right-half of the screen



appeared at the bottom indicating which direction the user should direct the ball
(Figure 2); participants were instructed to hit the green target. The ball direction was
controlled by the total power of the EEG spectrum between 8-14 Hz over the electrode
selected during the calibration period. Right hand motor imagery decreased this
amplitude, causing the ball to move to the right; relaxation increased this amplitude,
causing the ball to move to the left. The overall protocol lasted approximately 8
minutes. The BCI task was loaded through MatLab® (MathWorks Inc., United States)
and was composed of 5 blocks of 10 trials each, with a 5-second break in between
each block, and a 1-second break between each trial.

Figure 2. Brain Computer Interface task. The aim of the task was to move the ball towards the
green target. In order to move the ball towards the left green target, the subjects had to relax.

Transcranial Direct Current Stimulation Protocol

High-definition tDCS (HD-tDCS) uses smaller electrodes placed in flexible
configurations for neuromodulation of focused brain regions. To maximize the accuracy
of the stimulation, Finite-Difference-Method (FDM) modelling was used to determine
the optimal stimulating electrode configuration for the focal brain stimulation of the
right hand representation on the motor cortex (Talairach coordinates: x = -37; y = -21;
z = 58). In the software Reciprocity (Electrical Geodesics Inc., Eugene, Oregon, USA), a
pre-loaded MRI from a canonical 40 year old male head model was used to generate
the forward and inverse models of source-localized activity using FDM and sLORETA
(standardized low resolution brain electromagnetic tomography) modelling (25),(26).
The principles of Reciprocity are fully described in other publications (27). Briefly, the
software relates the graduate of the potential (Ψ) at a spatial point (r) generated by an
external source (l) with the surface potential (Φ) generated by a current diploe (d)
placed at the same position (r) (28). We set the total target electrodes to 12, yielding 6
possible current injection pairs In. For each pair, the software injects a fraction an of
the total targeted stimulation Imax (in our case, 1 mA; such that In = anImax). The
software iteratively solves for an across all current injection pairs In, focusing on the
electrodes with the maximum ΔΦ. In this way, the 6 anodal and 6 cathodal electrodes
are selected, along with the current distribution (an) for each current injection pair (In).
The results of the Reciprocity analysis selected the following electrodes on a Hydrocel
Geodesic EGI 128-channel net: 6, 7, 13, 30, 31, 106 were selected as anodes, and 40,
41, 46, 47, 50, 51 were selected as cathodes. Lidocaine, a topical numbing agent, was
manually applied to the selected 6 anodes and 6 cathodes to decrease the sensation
induced by the stimulation. tDCS stimulation ramped up from 0 to 1 mA over 2 minutes,



was maintained at 1 mA for 20 minutes (for the tDCS group only), then ramped-down
to 0 mA over 30 seconds (19). In order to maintain blinding, the control group received
tDCS during the ramp-up and ramp-down of the protocol only.

Data Processing

EEG processing. EEG was pre-processed in EEGLAB (Swartz Centre of Computational
Neuroscience, San Diego, California). All data were bandpass filtered between 1-50 Hz,
and notch filtered at 60 Hz. Data was manually cleaned by removing all artifactual
channels and all epochs with artifacts, and converted to average reference. Briefly,
artifactual channels were defined as those which deviated with respect to the general
trend of the majority of the channels or appeared to be flat and not having recorded
any data. Artifacts were defined as changes in amplitude or frequency that did not
follow the patterns of resting or active EEG. Eye blinks were detected using an
Independent Component Analysis (ICA). The eye blinks were removed by selecting the
components with high activity in the eyes region of the scalp map projections provided
by the program. Once the EEG was cleaned, the data from the electrode showing the
greatest ERD was extracted.

Mu Rhythms. A fast Fourier transformation was used to calculate the spectral power
of the EEG data from the selected electrode. The frequency with the highest power
between 8 and 14 Hz was manually selected, and a window of 2 Hz was imposed on
both sides of this frequency. This window was selected empirically after pilot testing to
maximize the difference in the area under the curve (AUC) of the power at the peak
frequency. The total area under the curve within this selected window was used to
estimate the total ERD and ERS for each session. As a result of non-physiological
artifacts in the EEG, no peaks were found on any days for two out of the 18 subjects,
and therefore, those subjectsʼ data was excluded from the dataset.

Accuracy. Three variations of accuracy were calculated: 1) right-target accuracy; 2)
left-target accuracy; and 3) total accuracy. Accuracies were averaged across
participants in each group for each day, creating a trajectory of task performance
across the 10-day experiment (Figure 3).

Figure 3. Mean Total Percent Accuracy over Time for Control and Experimental Groups.
Behavioral improvement. The tDCS group showed greater mean total percent accuracy over
time compared to the sham group (p = 0.021).
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Statistical Analysis. Linear mixed models (SPSS Statistics Data Editor, IBM Armonk,
NY: IBM Corp), were used to assess the interactions amongst the mu rhythm at rest,
mu rhythm during right hand motor imagery, ERD, total percent accuracy, total right
percent accuracy, and total left percent accuracy. The latter six were used as the
dependent variable when analyzing the interaction with group and day. One-tailed
unpaired t-tests were performed to determine if tDCS had a positive effect on total
percent accuracy using the means of total percent accuracy over the 10 days of both
groups, and the participant s̓ ability to perform total right and left percent accuracy for
both groups. A one-tailed unpaired t-test analysis was done to compare the two
groups in terms of ERD over time. The daily ERD of each subject in their respective
groups were averaged together. To assess the power of the mu rhythms at rest, a two-
tailed unpaired t-test was conducted. For each subject, the mu-rhythm values at rest
over time were averaged together. An unpaired t-test was conducted using the
averaged values of the experimental group to the control group. The effect of tDCS
and sham stimulation on mu rhythms during right hand motor imagery was assessed
using an one-tailed unpaired t-test. This analysis was conducted using the averaged
mu rhythms during right hand motor imagery over time for each subject in both groups.
For all statistical analyses the level of significance (α) was set at 0.05.

Results
Participant characteristics

A summary of the demographic characteristics of both groups is presented in
supplementary material. There were no statistically significant differences in gender
and age between the experimental and control groups (p = 0.63; p = 0.31).

The effect of tDCS on performance accuracy

Participants in the tDCS group achieved a higher mean total accuracy in the BCI task
than those in the sham group (t-value = 2.17, p = 0.021) (Figure 3). Additionally, tDCS
had a significant effect on the individual's ability to perform right hand motor imagery
(t-value = 3.56, p = 0.001). There was no statistical difference in terms of improvement
over time between groups (t-value = -2.88, p = 0.995).

The effect of tDCS on mu rhythms

There was no difference in ERD between the control and experimental groups (p =
0.22). The mu rhythms at rest and during motor imagery varied over time for subjects
in both control and experimental groups. The average power of the mu rhythms at rest
and during right hand motor imagery was not different between groups (t- value = 1.67,
p = 0.116 and t-value= 1.42,p = 0.088, respectively).

Mu-rhythms vs. accuracies

There was no significant relationship between ERD and accuracy: mu-rhythms at rest
with total left accuracy (p = 0.857); mu-rhythms during right hand motor imagery with
total right accuracy (p = 0.964); and the difference between the mu-rhythm at rest and
during motor imagery with the total accuracy (p = 0.342). We found an interaction
between Group and Day for mu rhythms at rest (F(2.149), p = 0.020) and ERD
(F(3.821), p = 0.001). Over the ten session, the resting mu rhythm of the tDCS group
increased overtime. However, the resting mu rhythm of the sham group remained
relatively similar for majority of the ten sessions. We did not find significant interactions



between Group and Day for the other dependent variables (mu rhythm during right
hand motor imagery, p = 0.923; total right percent accuracy, p = 0.456; total left
percent accuracy, p = 0.935; and total percent accuracy, p = 0.163).

Discussion
The aim of this study was to validate previous studies which evaluated the effect of
tDCS on controlling an SMR-based BCI however, using a high density targeted tDCS
system at 1mA. Motor imagery was used to create an ERD to affect the amplitude of
the sensorimotor rhythm; this change in amplitude was translated into the left and right
movement of a ball on a computer screen. tDCS applied over the left sensorimotor area
led to significant improvements in task accuracy, as well as accuracy in hitting the right
target, which was associated with right hand motor imagery. These behavioral
improvements, however, were not associated with changes in the amplitude difference
of the SMR induced by motor imagery.

Accuracy

Accuracy is to successfully get the ball in the designated target. After 10 sessions, the
tDCS group showed greater total accuracy and total right accuracy of the BCI task,
compared to control. These results are in agreement with the findings of Ang et al.,
who demonstrated that tDCS improved accuracy in motor imagery brain-computer
interface with robotic feedback for stroke rehabilitation (21). However, they contradict
Wei et al., who did not find a difference in accuracy between pre- and post-anodal
tDCS in healthy subjects despite getting a significant increase in ERD of the upper mu
post-intervention (10-14 Hz) (29). This difference may be attributed to the length of
training (1 day vs. 10 days), which may not have been enough time for participants to
learn to control the BCI through motor imagery. Many studies have reported that it
takes several days of practicing the BCI task to see improvements in the control of the
BCI (30),(31),(32).

Mu Rhythms

There was no significant difference between the control and experimental groups in the
daily mean of the mu rhythm over time. This is contrary to our hypothesis where a
greater change in the mu-rhythm between rest and motor imagery was expected in the
tDCS group. Previous studies have reported that when applying anodal tDCS in healthy
subjects, ERD of the mu rhythm increases. This leads to a decrease in amplitude of the
power of the mu rhythm and a greater difference in the power of the mu-rhythm
between rest and right hand motor imagery (22),(29). In our experiment, the mu-
rhythm during rest was calculated using the 1-second epoch between trials; this may
have affected these results, as it has been reported that the brain requires a minimum
of 7 seconds after a movement trial for the EEG to return to baseline (33). The mu-
rhythm of our participants may have had insufficient time to re-establish baseline
patterns, resulting in no difference between control and experimental groups. The
change in mu-rhythm power has been observed in other studies with longer inter-trial
intervals; Matsumoto et al., found that the ERD of the mu rhythm increased post-tDCS
when they used an 8-second period inter-trial interval (22).

Limitations

The main limitations of this study were the small sample size and the limited number of
participation sessions. Future studies should focus on increasing sample size and
greater number of participation sessions in order to determine the effect of tDCS on
one s̓ ability to learn.



The mu-rhythm threshold of the BCI task was derived by the experimenters using the
protocol described in the methods, and this needed to be re-calibrated daily. The
remainder of the task was carried out with the parameters set in this calibration period,
and errors at this stage could have reduced the efficacy of the participant s̓
performance with the BCI. For example, if the threshold was set too high, the
participant would experience greater difficulty moving the ball to the right target. While
this limitation equally affected both groups, and therefore would not change the overall
results of this study, it may have reduced the maximum potential accuracy that either
group could have theoretically achieved with the BCI.

In this experiment, participants were not cued about the target location for the
upcoming trial. Consequently, participants were not able to prepare for the mental task
required to control the ball, and needed to generate the requisite state immediately
upon the start of the trial. Participants reported anecdotally that when the target was in
the same location for numerous trials, it was easier to control the movement of the ball,
whereas when it was switching right and left, it made it more difficult to mentally adjust
for the appearance of the next target. To decrease the difficulty of subsequent BCI
experiments, we recommend cueing the participants about the upcoming trial (21) and
allowing them to mentally prepare for task ahead.

Although there were no differences between both groups in terms of demographics
(age and gender), other factors such as motivation, fatigue, mood, attention span as
well as other psychological factors have been shown to be correlated with MI-BCI
performance (34),(11),(35). These factors could explain, in part, the lack of differences
observed between groups in terms of change in mu rhythm over time. Our study,
having a small sample size, might have also made these inter-individual differences
more prominent.

Conclusion
The application of the high density system s̓ targeted tDCS at 1mA over the
somatosensory area led to significant improvements in a user s̓ ability to control a
SMR-based BCI like that of non-targeted tDCS at 2mA. However, this improvement was
not associated with an increase in the difference in power of the SMR between motor
imagery and rest. Our results validate those of Ang et al., we demonstrate that tDCS
can improve an individual s̓ ability to learn a BCI by speeding up the learning process
(12)(21). This suggests that this method has promise in accelerating the process of
learning to control BCIs for individuals with severe motor impairments.
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